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Introduction

In this chapter you’ll find:

• Section 1.1, "Chapter summary": what’s in the chapters (hot links if you’re reading online).

• Section 1.2, "Typographical conventions": a manual like this is made easier to read (though perhaps not made
more beautiful) if we use typographical conventions so you can recognize machine registers, instructions and so
on. Here’s what they look like.

• Section 1.4, "Key features of the 34K™ core": a quick guide to the important features of the 34K core.

• Section 1.5, "Specification summary": a terse summary of facts and figures.

1.1 Chapter summary

• Chapter 2, “The MIPS® MT ASE - Multithreading the RISC way” on page 17: about the MIPS Multi-Threading
instruction set extension (“ASE”).

• Chapter 3, “How the 34K™ core implements multi-threading” on page 41: implementation options and more
details.

• Chapter 4, “Initializing the 34K™ core - Multi-Threaded bootstrap issues” on page 51: setting up the 34K core’s
multi-threading system.

• Chapter 5, “The MIPS32® DSP ASE” on page 57: the instruction set extension for faster media algorithms.

• Chapter 6, “Memory map, caching, reads and writes and translation” on page 71: all about memory accesses and
translation.

• Chapter 7, “Kernel-mode (OS) programming” on page 89: use of “hazard barriers”, the advanced interrupt sys-
tem, shadow registers and power management.

• Chapter 8, “34K™ core features for debug and profiling” on page 97: EJTAG debug unit, watchpoints and per-
formance counters.

• Chapter 9, “Programming the 34K™ core in user mode” on page 121: on tuning code specifically for the 34K
core family.

Appendices:

• Appendix A, “References” on page 131: further reading.

• Appendix B, “Glossary” on page 133: a glossary of terms which may be unfamiliar (particularly relating to
multi-threading).
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• Appendix C, “CP0 register summary and reference” on page 137: functionally orientated index and guide to the
34K core’s “co-processor zero” registers and fields.

• Appendix D, “MIPS® Architecture quick-reference sheet(s)” on page 153: handy guide to easily-forgotten data
on MIPS.

• Appendix E, “CP0 Registers of the 34K Core” on page 159: reference-manual long-format tables of the CP0 reg-
isters and fields (if you are printing this manual, you may like to bind this section separately).

• Appendix F, “Revision History” on page 217: for this document.

1.2 Typographical conventions

CPU register names are in oblique monospace. Co-processor zero (CP0) registers fields are shown after the register
name in brackets, so the interrupt enable bit in the Status register appears as Status[IE]. CP0 register numbers are
denoted by n.s, where “n” is the register number (between 0-31) and “s” is the “select” field (0-7). If the select field
is omitted, it’s zero. A select field of “x” denotes all eight potential select numbers.

The acronym CP0 in the paragraph above is a word defined in Chapter B, “Glossary” on page 133 and shows up in
italics - but if you’re reading on-line it also shows up as blue, showing that it’s a link which you can click to get to the
definition.

References to other manuals are collected together in Appendix A, “References” on page 131 and look like this
[MIPS32].

Instruction mnemonics and assembler code fragments are set in bold monospace, core interface signal names in
small italics, and C or other programming language constructs in monospace.

To use register and field names in your program, you’ll need a C header file or something similar. It’s probably better
and easier not to write your own: see [m32c0.h] and [mt.h].

1.3 Finding information in this manual

If you’re reading this manual on-screen, text shown in blue is a hot-link; click on the text to go to the section, figure or
table referenced. The chapter index and lists of tables and figures at the start of the book is click-through too.

All the special Co-processor zero (CP0) registers are listed in Appendix C, “CP0 register summary and reference” on
page 137. That appendix has the registers listed by name, by number and by function. The by-number table has hot-
links to other sections where each is mentioned - and for those reading on paper, all those links have page numbers.
There’s an alternative description of all the CP0 registers and fields in the more formal style used in other MIPS Tech-
nologies manuals in Appendix E, “CP0 Registers of the 34K Core” on page 159.

1.4 Key features of the 34K™ core

The 34K core is a 32-bit MIPS32 CPU with two novel instruction set extensions:

• The MIPS® MT ASE: The multithreading ASE (“application-specific extension” to the MIPS architecture). It’s a
modest addition to the instruction set, but a profound change to the CPU, which can now run multiple threads
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concurrently. The set of software-visible resources devoted to one thread are known as a TC. The 34K core
allows for two multithreading models which are very different for software:

– Multiple Virtual Processing Elements (VPEs) in a CPU: each “VPE' has at least one TC together with its own
copies of everything required to make it just like an independent MIPS CPU. Your 2-VPE (or more) system
seems to software just like a 2-CPU “SMP” multiprocessor: indeed, it can run SMP software - software which
knows nothing about MIPS MT - without requiring any CPU-related changes.

– Multiple concurrent threads running within one VPE, usable by software which knows about MIPS MT. These
multiple threads are relatively cheap, because they’re equipped only with the resources necessary to run user-
level programs (but they share a lot of OS-controlled resources.)

Much of this manual won’t make any sense until you get your head round multithreading, so unless you’re thor-
oughly familiar with it already you should acquaint yourself with Chapter 2, “The MIPS® MT ASE -
Multithreading the RISC way” on page 17.

• DSP ASE: this is a lot of new computational instructions with a fixed-point math unit crafted to speed up popular
signal-processing algorithms, which form a large part of the computational load for voice and imaging applica-
tions. Some of these functions are ‘‘SIMD” - they might, for example, do two math operations at once on two 16-
bit values packed into one 32-bit register.

There’s a guide to the DSP ASE in Chapter 5, “The MIPS32® DSP ASE” on page 57 and the formal specifica-
tion is [MIPSDSP].

1.5 Specification summary

The 34K core is provided as a synthesizable package, and customers have considerable freedom to customize it. But
all 34K cores share these:

• CPU architecture: compliant to Release 2 of the MIPS32 Architecture [MIPS32].

• Multi-threading: as defined by the Multithreading extension to the MIPS32 architecture as specified by
[MIPSMT].

The 34K core can be synthesized to be able to run five concurrent threads (5 TCs) in up to two “virtual proces-
sors” (2 VPEs).

It may be equipped with a bank of Inter-Thread Communication storage (ITC) locations, following the recom-
mendations of [MIPSMT].

• DSP-orientated instruction set: it implements the DSP extension to the MIPS32 architecture, see [MIPSDSP].

• MIPS16e™: the 16-bit instruction set option for compact code, see [MIPS16e].

• 9-stage pipeline1: a sophisticated branch prediction unit keeps the CPU efficient, even when it’s only running one
thread.

• Separate I- and D-caches: 4-way set associative. The SoC designer may choose from 16, 32 or 64Kbytes size for
each cache (and can even omit either cache). Parity checking in the cache is optional.

1. 11-stage for MIPS16e instructions
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Caches are non-blocking, and both allow for hit-under-miss and miss-under-miss - the I-cache uses that to allow
a cache-hitting thread to continue even though an I-cache refill is pending for some other thread.

The D-cache is write-back (memory regions may also be configured a write-through and a special "uncached
accelerated" write mode). You can lock data into the caches.

• OCP system interface: industry-standard interconnect.

SoC Builder’s Optional features

Some features are provided only at the option of the SoC integrator, and may depend on separate licensed material
from MIPS Technologies:

• CorExtend™ user-defined instructions: the 34K Pro Series™ core family allows you to add custom instructions
as described in [CorExtend].

• Floating point unit: fitted to 34Kf™ cores, with 32 full 64-bit floating point registers.

• Fixed mapping MMU: reduces core size when a TLB is not required.

• Instruction- or data-side “scratchpad” memory: each can be up to 1Mbyte of high-performance on-chip mem-
ory, which can be dual-ported to the OCP interface for “push” I/O architectures.

• EJTAG debug unit: on-chip debug resources, summarized in Section 8.1, "EJTAG on-chip debug unit".

• Power-management options: summed up in Section 7.4, "Saving Power" below.

• OCP L2 extensions: to allow front-side L2 cache.

Refer to [34K_INT] for more details about the options.

1.6 Pipeline and implementation

In documents about MIPS Technologies other cores you’d have found a section here with the basic pipeline. With the
34K core that is hard to describe without knowing something about multi-threading (particularly) so we’ve moved it
to Section 3.1, "The 34K™ core pipeline and multithreading" below.
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The MIPS® MT ASE - Multithreading the RISC way

We use “MT” for “multi-threading”. So what does a MIPS architecture CPU do to run multiple threads concurrently?
That question is one about “architecture” - the corresponding “how does the 34K core run multiple threads?” question
is about implementation, and is answered below in Chapter 3, “How the 34K™ core implements multi-threading” on
page 41.

In this chapter:

• Section 2.1, "What’s a thread and its context?": basic definitions.

• Section 2.2, "Why multi-threading?": motivation.

• Section 2.3, "Different kinds of multi-threading: TCs and VPEs": we offer two levels of multi-threading in one
CPU.

• Section 2.4, "When can’t threads run?": and what they’re doing when stopped.

• Section 2.5, "Thread-scheduling decisions and the policy manager": what happens and what influence can you
have.

• Section 2.6, "Multithreading, exceptions and interrupts": interrupts and other exceptions in the MIPS MT CPU.

• Section 2.7, "Multithreading, non-blocking loads and stores, and gating storage"

• Section 2.8, "MIPS® Multithreading ASE - new instructions"

• Section 2.9, "Multithreading ASE - CP0 (privileged) registers": understanding multi-threading in fine detail.

Why multi-threading takes a lot of thinking about

Any form of concurrency makes your head hurt. Our brains are doubtless extremely parallel: we can talk on a cell-
phone and drive with only a 50% increase in our chance of crashing. But our ability to reason correctly is distinctly
sequential, and so far we have not bred a race of super-kids who can write explicitly parallel software.

Multi-tasking software has been successfully understood by dividing it into sequential chunks ("threads", though a
more precise definition follows) which communicate and synchronize with each other only in carefully controlled
ways. You can then unleash a flock of threads and allow them to evolve separately. Programmers find it almost impos-
sible to keep track of what every thread is doing at any one time - but with simple-enough rules about the interactions,
the system will still work.

The multithreading CPU pushes thread concurrency down to the hardware level, so you should expect to find it some-
what mystifying from time to time. To really understand multi-threading and the 34K core you need to be able to
switch between a software-orientated threads-eye-view (where threads are internally sequenced and other threads are
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happening somewhere else) and a hardware engineers CPUs-eye-view (where everything happens in sequence along
the pipeline). This is difficult, but we hope not impossible. This chapter takes the “thread” viewpoint, and the next
chapter stays closer to the hardware.

2.1 What’s a thread and its context?

There are a couple of critical phrases and acronyms which it’s useful to define carefully before we start:

• Thread: a set of computer instructions read and activated in their programmed order.

Operating systems most often use the word “thread” specifically for application-software visible threads sched-
uled by the OS. But our wider definition means that any piece of software must have at least one thread. Skid
buffer

By this definition something like an interrupt handler (which is not reached as a result of normal program flow)
counts as a thread in its own right. This more general definition of "thread" seems to be a more logical starting
point for describing multi-threading hardware.

• Thread context: you might want to consider the complete state of a running thread, enough so you could restart it
successfully. But for our purposes we’re particularly interested in the part of the state which gets stored inside the
CPU - what [MIPSMT] calls the “thread context”. The thread context always (of course) includes the Program
Counter (PC) and the general-purpose registers. There are some good justifications for narrowing our focus
down to the state held in the CPU:

1. We don’t need to encompass the thread’s data stored in memory, because we know how to share memory
already (for OS-defined threads, for example);

2. We don’t include state which is inherently inaccessible to this particular instruction stream - so kernel-only
readable CP0 registers are invisible to a user-privilege thread;

3. We don’t include state which is logically unnecessary, and just kept for efficiency - for example, cache con-
tents, which generally make no difference to the underlying memory image.

With this definition, what is included in the thread context varies according to what sort of software is running.
For a Linux interrupt handler on a conventional MIPS architecture CPU the CP0 registers are part of the thread
state, but for a Linux application thread they’re not visible.

You could have found the definitions of Thread and Thread context in Appendix B, “Glossary” on page 133 below.
Any word or phrase in blue (or slightly faint in real black-and-white print) is probably explained. If you’re reading
online and it’s blue, it will link to its definition: try it.

2.2 Why multi-threading?

Traditionally, a CPU only held one thread’s context (one PC, one set of registers). Operating systems providing mul-
tiple threads held all the state for the non-running threads in OS-specific data structures.

But MIPS MT CPUs are equipped with more than one PC and register set so they can hold more than one thread’s
context.

There’s more than one reason why you might want to build a multithreading CPU. For MIPS MT the main motivation
is to build a CPU which can continue to do useful work when some computation is held up for a period of a few to
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some hundreds of CPU cycles - typical of cache misses and some other interactions in embedded systems. Such a
hold-up is too short to allow an OS to borrow the CPU to do something else (the OS thread-switch overhead is itself
probably 100 cycles or more). But in many workloads such hold-ups are frequent enough that the CPU spends half its
time waiting for data.

A multithreading CPU can keep other threads making progress when one thread is held up. If (as is commonly the
case these days) the real workload is already split into multiple threads, that can turn into extra application perfor-
mance without modifying application code.

The extra thread state storage (mostly the register file) only represents a fraction of the gate count of a CPU, so this
extra performance has cost only a small increment in area and complexity. That’s why in 2005 everyone wants to do
multithreading.

2.3 Different kinds of multi-threading: TCs and VPEs

In some ways the simplest thing to do is to replicate every software-visible piece of CPU state. Then your multi-
threading CPU will look pretty much like two CPUs which happen to share memory, creating a “virtual multiproces-
sor” (VSMP). That’s what Intel’s newer multithreading x86 processors do; you can drop a Linux kernel designed for a
two-way multiprocessor onto such a CPU and it just works. It’s an easy way to get a software market for a new tech-
nology.

But performance-critical embedded applications are those where the multithreading is an explicit part of the system
design - we’ll call it “explicit multithreading” or EMT. EMT is new, so we don’t need to offer backward compatibil-
ity. An EMT application does not need the whole CPU replicated; it can manage with what is visible to user-level pro-
grams - the PC, GPRs and a little more.

The original and ingenious trick in the MIPS MT architecture is that you have a choice of either model, and can even
do both in the same CPU at the same time. So a MIPS MT CPU has multiple TCs (the acronym started out as Thread
context), but also provides for more than one VPE (“VPE” started out as a Virtual Processing Element.) A TC pro-
vides the minimum required to do explicit multithreading, while one or more TCs with their own VPE really look like
an independent CPU, enough to provide a congenial home for software which doesn’t really want to know about
MIPS MT - perhaps even a non-MT-aware legacy operating system.

2.3.1 How an MT CPU’s hardware uses TCs and VPEs

Each instruction being run by an MT CPU has a TC number. Whenever the instruction accesses some state - reads or
writes a general-purpose register, for example - it uses its TC number to extend the register-number field which is
already defined inside the instruction. An instruction sees a different set of registers depending on the TC number: it’s
very simple, and it just works.

It’s not quite that simple on a MIPS architecture CPU, because of the TC/VPE trick mentioned above. So this instruc-
tion might be for TC #5 (it uses general purpose registers from the fifth bank) but VPE #1 (it gets most of its CP0 reg-
isters from the first bank). Again, this should just work. What’s more complicated, of course, is to get those CPU
resources working which can’t simply be reduced to registers. But that’s not architecture, it’s implementation, and
described in Chapter 3, “How the 34K™ core implements multi-threading” on page 41 below.

2.3.2 CPU resources and registers shared between all threads

Many of the CPU’s resources are not replicated for MIPS MT, just used by whichever TC is identified by the instruc-
tion accessing the resource. They include:
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• Caches: the cache’s contents are just like memory (only faster) and unproblematic. On a CISC CPU the cache is
usually completely invisible to running software, and there’s no issue at all about multiple threads - but MIPS
architecture CPUs generally need the OS to intervene in the caches at some points.

The MIPS MT ASE requires that the writeback and invalidate cache instructions used by real OS’ when run-

ning are multi-threading safe. Cache manipulations may be independently mixed by two VPEs1 without immedi-
ate harm; even if one VPE invalidates a cache entry from right under the feet of another one, everything should
keep working - the consuming VPE will either get the old copy (which it was happy with) or cache-miss and pull
in a new one (which should be just the same data).

However, arbitrary re-initialization of a cache already in use by another VPE will not be safe; writeback data
could be lost. Programs running on separate VPEs would probably be well-advised to get cache initialization
done by a thread running alone before other VPEs are enabled.

With a multithreading workload, cache performance could suffer; multiple threads will probably produce a larger
and more diverse “working set” of active memory regions. However, a cache works well (or not) when optimiz-
ing repeated accesses over spans of code executing hundreds of thousands to millions of instructions. During that
time which even a single-threaded workload will climb all over application and OS space. The 34K core’s caches
are already 4-way set associative, which should be enough to minimize misses caused by overlapping hot-spots
of several concurrent threads. Our measurements to date back that up.

• Main pipeline: each of the 34K core’s main pipeline stages just serve the TC associated with the current instruc-
tion. No problem.

• The TLB (sometimes): the MIPS MT ASE allows the TLB entries to be shared between all VPEs, or partitioned
between VPEs. The 34K core can be configured to do either (to share the TLB, set MVPControl[STLB] to 1.)

If the TLB is not shared, it is partitioned by hardware so each VPE sees its own independent array of entries.

When the TLB is shared, there’s a problem of managing concurrent access by the two VPEs. It’s up to OS soft-
ware to control concurrent access by OS maintenance routines. But that still leaves the risk that one VPE’s main-
tenance software will collide with another VPE’s TLB refill exception handler: see Section 4.2.2, "Sharing and
not sharing the TLB" for how that’s avoided.

• Basic configuration registers: in a highly adaptable design like the 34K core the initialization software needs to
know the full resource complement of the CPU, or it can’t know how to share it between the VPEs.

The registers MVPControl and MVPConf0-1 allow software to see what resources are provided CPU-wide, and
these registers are not replicated per-VPE.

• Performance counters: since these are infrequently used, but it’s valuable to have as many as possible available,
the four registers are shared between both VPEs.

This is more implementation than architecture, but some software-invisible resources are also shared. Notably, the
34K core’s “branch history table” (BHT) in the instruction fetch unit is shared. That seems quite wrong: the branch
histories of different threads are certainly likely to be different. But the BHT was only statistically correct anyway;
the branch history is only recorded in entries indexed by some modest number of low virtual address bits. Even in a
conventional single-thread CPU, different branches could map onto the same entry and cause confusion (and thus

1. The CP0 registers used with the cache instruction are only replicated per-VPE, so EMT code must take
care to avoid re-entry into cache management functions by other threads.
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lower the prediction accuracy) - but there are enough different entries that this relatively rarely happens. Having mul-
tiple threads doesn’t really make it much worse, and the BHT should continue to perform well in typical applications.

2.3.3 CPU resources and registers replicated per-TC

Some state needs to be independently kept for each TC, including:

• Program counter and general purpose (integer) registers: the TC’s program counter can be seen and adjusted
(when the TC is halted, otherwise it’s a moving target) in TCRestart. The architecture does not define what you’ll
get if you read your own TCRestart; probably some "historical value".

Each TC, of course, has its own set of 32 general purpose registers. It also needs its own copies of the accumula-
tor registers in the multiply-divide unit (hi/lo), and the extra accumulator registers and control register provided
as part of the DSP ASE described in Chapter 5, “The MIPS32® DSP ASE” on page 57.

• Privilege state: some TCs (sharing a VPE) may be in the kernel while others are running user-mode software. So
each TC has its own copy of the user-mode/kernel-mode flags Status[KSU]. TCStatus[TKSU] provides a conve-
nient per-TC view of the same flags. Each TC gets a copy of the TCContext register too: it has no hardware sig-
nificance, but provides a useful scratch register for the OS to keep some key thread identifier.

• Address space: we don’t want to insist that all TCs which share a VPE must execute in the same address space.
Different address spaces in MIPS architecture CPUs are managed by only returning TLB translations for virtual
addresses when they’re presented together with the right "ASID" value, an arbitrary 8-bit token held in
EntryHi[ASID] while the system runs.

So each TC also has its own copy of the EntryHi[ASID] field - the same field is accessible as TCStatus[TASID].

• Access to co-processors: the 34K core’s FPU - when fitted - is built with just one set of registers. That makes
sense because the registers in the floating point unit already occupy a lot of logic space, and the 1-register-set
FPU design is identical to that used in the 24K™ core family. But it means that the FPU can’t be used by multi-
ple concurrent threads.

Some other co-processors might have one set of data registers per TC, supporting arbitrary multi-threading.

In the MIPS architecture you can’t use any co-processor unless you first turn on the corresponding Status[CUx]
bit in the status register.   MIPS MT uses that to provide a mechanism to share the co-processors, detailed in the
notes to Figure 2-2 below. As part of that mechanism the Status[CU3-1] bits are also visible at TCStatus[TCU3-1].

• Which VPE we’re using: a TC must know which VPE is belongs to, or it can’t get at the right copy of the per-
VPE registers. The VPE affiliation is readable and writable in TCBind[CurVPE]. (Each VPE also has a distinct
number readable at EBase[CPUNum], to allow seamless use of multi-CPU software on multiple VPEs.)

• TC halted: think of this as "TC anesthetized" - it stops the TC from wriggling around when under surgery, or
even just close inspection. It occupies its own 1-bit register TCHalt so it can be set and cleared atomically.

While this is set the TC is frozen: won’t run, can’t be picked by fork. The architecture abhors the idea of a
halted thread being half-way through a synchronization access, and any pending load/store to Gating Storage
will be rolled back when this bit is set. From a hardware point of view the gating storage access is aborted; but
unless you do something special to stop it the access will be quietly retried once the OS is finished with its main-
tenance and clears TCHalt.

• TC interrupt-exempt: set TCStatus[IXMT] to mean this TC will never be picked to handle an interrupt exception
(even if that means the interrupt is completely ignored).
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• Per-TC flags: there are also bits to control the ability of fork to seize a “free” TC and make it run a new thread,
and for other purposes. See the description of fork in Section 2.8, "MIPS® Multithreading ASE - new
instructions" and the notes on Figure 2-2.

• Debug state: the single-step bit Debug[SSt] is replicated per-TC, for fine debugger control. The debugger is also
given a control bit Debug[OffLine] which it can use to prevent TCs other than the one under debug from springing
into life during single-step or when running a thread to the next breakpoint.

2.3.4 CPU resources and registers replicated per-VPE

We want a TC running alone in a VPE to be a MIPS32-compliant processor in its own right, so each VPE replicates
all the CP0 registers required by release 2 of the MIPS32 specification (a few read-only registers are in fact shared
between VPEs on the same CPU, but they’re read-only, so who’s to know?)

So what is replicated?

• State related to exceptions: MIPS architecture experts will recall that you enter exception mode by taking an
exception, and remain in it until you either return with an eret or (more common in a complicated OS) you
carefully clean up exception-dependent information and then manually clear Status[EXL].

The MIPS MT architects determined that only one TC from a VPE is allowed to be in exception mode at any one
time - when one TC takes the exception, its VPE siblings are suspended until the first TC clears Status[EXL]. To
do otherwise would require a lot of extra replicated state, and would lead to some nasty concurrency hazards.

• Interrupt system and interrupts: interrupt signals to the chip are wired to VPEs separately (a reasonable strategy
may be to wire all the VPEs in parallel to the same inputs, but that’s an SoC designer’s decision).

The interrupt management fields in the Cause and Status registers are all per-VPE.

• Cache management registers: all the cache operation staging registers are per-VPE. In fact, most of the CP0 reg-
isters are per-VPE.

• The TLB (sometimes): on the 34K core the TLB may either be shared, or partitioned invisibly so that two VPEs

each think they have their own dedicated chunk of the TLB1.

• The EJTAG debug unit: the physical unit may or may not be replicated, but the registers in its CP0 software inter-
face (DEPC, DESAVE and Debug) are replicated per-VPE.

In debug mode all TCs other than the one running the debugger are suspended, regardless of VPE affiliation.
Moreover, the TC in debug mode continues to run even if it is otherwise marked as halted, not-allocated etc.
More details in Section 8.1.2, "Debug mode".

2.4 When can’t threads run?

A CPU can be compliant to the MIPS MT ASE without being committed to any particular thread-scheduling algo-
rithm - the decision as to which thread’s instruction to pick next is implementation-dependent. But that level of
abstraction is difficult, so let’s make some working assumptions - which will, happily, turn out to be correct for the
34K core.

1. The amount of the TLB awarded to each VPE is configurable when your core is synthesized. Ask your hardware engineer.
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Some implementations permit customizable hardware outside of the core to influence the CPU to favor one TC over
another when deciding what instruction to run next; see Section 2.5, "Thread-scheduling decisions and the policy
manager" below.

But before worrying about that, let’s look at something simpler. A practical CPU might run instructions in turn
("round-robin") from each live thread. But what about that weasel word "live"? When can a thread not make
progress? Well, it can be:

• Waiting for memory data: most often, to resolve a cache miss (for of the order of 50 cycles) - making use of this
idle time is the first motivation for contemporary multithreading.

Or this might also be an uncached read of some device-register data (of the order of 100-500 cycles) - particu-
larly relevant to embedded applications.

• Blocked on read/write “gating storage”: we envisage that multithreading applications are likely to use special
memory locations where the wait-for-transfer is used as a deliberate way of matching the speed of the software to
the arrival of data either from other threads, or some direct hardware source/sink. Waits of this kind may extend
for thousands of cycles. So the MIPS MT ASE describes how some memory locations are accessed according to
special rules which make them Gating Storage, and describes a particular application of gating storage to
optional ITC locations. See Section 3.3, "Inter-thread communication storage (ITC)" for the facility provided by
the 34K core.

• Blocked on an "interrupt-like" external signal: a thread which waits for a particular hardware signal is an obvious
multithreading analogue of an interrupt handler, and likely to be useful. You’ll see how the MIPS MT yield
instruction can be used for that purpose.

• Halted - closed for maintenance: there are bound to be things the OS wants to do with TCs which can’t be done
while it’s live, and each TC comes with a "Halt" button in the TCHalt register.

• Not "allocated": the MT system includes the fork instruction, which provides a very lightweight way of start-
ing a new thread - potentially, it’s even usable from user-mode in a protected OS. An OS obviously can’t simply
relinquish control of thread scheduling, but it can arrange to provide a pool of ‘‘free’’ threads which fork can
use - they’re a bit like taxis waiting at a taxi-rank for customers. The TCs “at the rank” are prevented from run-
ning code by having their TCStatus[A] (“allocated”) bit clear. If a system doesn’t use fork, then it must take
care to set the allocated bit explicitly on any TC which is to run.

• Affiliated to an unactivated VPE: that is, one with VPEConf0[VPA] zero.

• Asleep after executing a wait instruction: in which case it won’t awake until its VPE gets an interrupt (it doesn’t
matter which TC runs the interrupt code, all TCs are woken from their sleep).

• Suspended - temporarily inhibited to avoid some concurrency problem: for example we’ll see that a VPE
becomes "single-threaded" while it is handling exceptions, so that implicitly suspends all the VPE’s other TCs.
OS software can achieve a similar effect using instructions such as dmt (stop all other threads with the same
VPE affiliation) and dvpe (stop all other threads, even in different VPEs).

• “Offlined” by a debugger: using Debug[OffLine], typically so the debugger can isolate another thread for test.

In this manual we’ll try to consistently use the word stopped for a thread subject to any of the conditions above - and
by analogy, we’ll use the same adjective to describe the TC which is executing the thread. The opposite of "stopped"
is live.

We’ll distinguish a stopped thread as either:
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• Stalled: waiting for a condition which could be experienced by a program on a single-threaded CPU - that
includes waiting for data from a cache miss or an uncached read, OR:

• Blocked: waiting for something other than the above. That’s some deliberate multithreading synchronization by
yield, a gating storage read, or explicitly stopped as a result of software activity.

The blocked state is new with MIPS MT. The nearest thing that a thread on a non-MT MIPS CPU can come to
"blocked" is when the CPU is asleep after executing wait.

For blocked threads we’ll use halted, suspended and asleep in the specific senses above. The use of these terms is
compatible with the formal specification [MIPSMT], though that uses running to instead of live. In the formal speci-
fication “running” means either live or waiting for a normal read/write.

Regardless of why a thread is stopped:

• The CPU: will be interested in issuing instructions from some other live thread. In a simple pipelined CPU, that
may involve discarding some instructions from the stopped thread, if they’ve already entered the main pipeline.

• The OS: may be interested in taking control when a thread is blocked for a long time - the TC could be in princi-
ple given another thread which might be able to make more progress. The OS overhead in changing the TC to
another thread - really the same job as a thread-switch on a conventional CPU - is likely to be more than 100
instructions so the OS should only do this when the thread is likely to remain stopped for many hundreds of
cycles.

But it’s important that the OS has the power to take a blocked thread and detach it from its TC cleanly, so it can
be restarted. That motivates some of the key features of the architecture, including the details of Gating Storage,
see Section 2.7.1, "Gating storage".

2.5 Thread-scheduling decisions and the policy manager

The MIPS MT architecture is agnostic about thread scheduling. The immediate choice of which thread to run next is
made inside the core; in the absence of any directions to the contrary, this choice is required to be fair to TCs in the
long run.

However, in MIPS Technologies cores we envisage a rather dumb in-core scheduler given long-term hints by a Policy
Manager (PM) which, living outside the core, may be customized for specific applications.

In particular the TCSchedule and VPESchedule registers (if implemented at all) will typically be inside the policy
manager block; so what they do is strictly implementation-dependent.

The way the in-core scheduler in the 34K core works is described in Section 3.2.1, "The Dispatch Scheduler", and the
choice of policy managers available from MIPS Technologies is in Section 3.2.3, "Policy managers available for the
34K™ core family".

2.6 Multithreading, exceptions and interrupts

An exception in a single-threaded MIPS architecture CPU is usually quite disruptive in the pipeline, and is commonly
implemented by discarding a lot of execution state (pipelines get flushed and instructions discarded). An exception on
a MIPS MT machine happens within a thread context - and other threads (at least those on separate VPEs) expect to
continue undisturbed. So you’d expect there to be some difficulties when we redefine exceptions on a multithreading
machine.
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There are two types of exceptions:

• Interrupts are “asynchronous” - they happen for reasons unconnected with any particular instruction and are dis-
cussed in Section 2.6.1, "Multithreading and interrupts" below.

• Synchronous exceptions, associated with a particular instruction. That’s what we’ll look at first.

Bear in mind that an OS is a program (a set of threads, in fact). It’s not characterized by the TC which happens to exe-
cute some part of it. The OS’ exception handlers are each separate threads in their own right, in the meaning given by
our definition of Thread.

Synchronous exception handlers are run by the TC whose instruction caused the exception. The TC immediately
ceases work on its thread and starts fetching instructions from the appropriate exception handler.

The MIPS MT ASE requires that once a TC enters exception state, all the other TCs within the same VPE are sus-

pended. None of the other TC’s instructions may be executed until the VPE’s Status[EXL] bit is cleared1 by the excep-
tion handler. The exception handler (a new thread, remember) runs with kernel privileges and has access to all the
defined CP0 registers, Because only one TC can be in exception state, the exception-related CP0 registers need only
be replicated per-VPE.

In your MIPS MT system an exception not only causes a hiccup to the thread which takes it, but also suspends unre-
lated threads in the same VPE. If your application needs to maximize concurrency, you should consider minimizing
exceptions - you may be able to use a thread blocked on an ITC access or yield condition instead. And, of course,
arrange that exception handlers (as soon as they can) save the state necessary that they can drop back out of exception
mode.

2.6.1 Multithreading and interrupts

In the MIPS architecture interrupt management is by CP0 registers (in particular, Cause and Status). Those registers
are replicated per-VPE, not per-TC; so interrupt masking and steering is managed per-VPE. Even interrupt "wiring"
into the core is per-VPE.

Each interrupt input may be connected to just one VPE or to all of them: ask your hardware engineer. In some sys-
tems you may be able to redirect interrupts (outside the CPU) under software control. If you connect and unmask an
interrupt on multiple VPEs, any number of them may take the interrupt exception - you probably don’t want that to
happen, so either don’t connect or don’t enable some of them...

The interrupt exception may be taken by any available TC associated with the VPE.

The MIPS architecture already provides multiple ways to refuse an interrupt exception: an interrupt to any thread
from this VPE can be prevented by exception mode, a global interrupt-enable flag which may be zero, and by per-

interrupt mask bits: that is by Status[EXL], Status[IE] and Status[IM]2. The MIPS MT architecture adds yet another
reason not to take an interrupt. You can now set a new per-TC CP0 register field TCStatus[IXMT] to make the TC
Interrupt exempt. That will prevent the particular TC from being used for an interrupt exception. It’s most obvious
use is to permit some TC to run a thread which benefits from living in an interrupt-free universe.

1. That may seem somewhat restrictive, but is necessary: critical exception handling state in the CP0 registers is not replicated
per-TC, only per-VPE.
And it’s not so bad as it looks, because it’s already good practice to minimize the amount of code which runs with
Status[EXL] set.

2. This list is not comprehensive.
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2.7 Multithreading, non-blocking loads and stores, and gating storage

Most modern MIPS architecture cores implement non-blocking loads: that is, the core does not simply stop and wait
for the load data to arrive. Instead, the register target of the load is marked and computation continues. If the data
arrives before the program tries to use it, the data is sent directly to the register. But if some other instruction wants to
read the register before the data arrives, the "consuming" instruction waits.

That means that a thread in a MIPS MT machine which does a “slow” load stops on the consuming instruction. When
that happens the TC is still holding resources (e.g. the "fill buffer" in the CPU’s bus interface unit which remembers
the load, waits for the data, and associates it with the register).

If you are using long-delayed loads as a means of synchronizing your application, non-blocking loads are unwel-
come: it would be preferable for the thread to stop on the load itself.   So we provide a way to do that: memory loca-
tions used for synchronization can be mapped as gating storage.

2.7.1 Gating storage

The MIPS MT ASE provides for a kind of storage location whose behavior is adapted to loads which might be quite
long-delayed, and which you may want to use for intentional thread synchronization. Such a location is called Gating
Storage. A thread loading from a memory region marked as “gating” will block on the load itself. This is not the stan-
dard way of doing things: a thread which reads from a normal location which is slow to respond would run on until it
attempted to use the data (that’s a “non-blocking load”).

It turns out to be useful to generalize this to writes as well as reads: even stores to gating storage locations block until
the core gets an indication that everything went OK.

If a thread is blocked on a gated storage access and the OS decides that one of its valuable TCs has been hanging
around too long, then the OS can take action. If the OS writes a 1 to the TC’s TCHalt register any gating storage
access will be aborted, with the TCRestart address set to re-execute the load/store. Once the TC is safely halted, the
OS can decide to use the TC for something else. When the thread is eventually scheduled again, the load instruction
will be re-executed. Meanwhile the CPU hardware can forget about it.

The core interface provided for gating storage locations also permits external logic to abort an uncompleted load or
store. Perhaps it’s better to describe this as “complete the operation with an exceptional condition”. The thread doing
the access gets an exception, with the restart address set so the load/store will be retried after the exception. The gat-
ing storage exception is synchronous, and you’re guaranteed that the restart location captured in EPC will point to the
load/store (or a preceding branch, if the load/store is in a branch delay slot). The exception can only happen if the
thread is still waiting for the load/store, and the thread isn’t otherwise prevented from running.

If required an OS can take control of all GS load/stores; set VPEControl[GSI] and all GS accesses trigger an excep-
tion.

Out on the gating storage interface, no external party can see whether a TC is waiting or not. All GS transactions
involve delivering something which waits around until the other side responds (some software books call this kind of
synchronization a rendezvous).

Gated storage provides the opportunity to provide ITC locations - a form of what some of you may have read about
before as “full/empty storage”. The ITC implementation which is optional in the 34K core is described in Section 3.3,
"Inter-thread communication storage (ITC)" below.
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2.8 MIPS® Multithreading ASE - new instructions

There are very few extra instructions:

• fork rd,rs,rt: fires up a thread on a free TC (if available, see below). rs points to the instruction where the
new thread is to start, and the new thread’s rd register gets the value from the existing thread’s rt.

Some vital per-TC state is copied from the parent. That’s whether you’re in kernel or user mode, defined in
TCStatus[TKSU], (which is the same as Status[KSU]); and what address space you’re part of, defined in
TCStatus[TASID], (which is the same as EntryHi[ASID].)

When the thread has finished its job it should use yield $0 to free up the TC again.

fork/yield are the only MIPS MT instructions usable in user mode (they’re also highly original, and are
likely not to be extensively used in early MIPS MT architecture applications using substantial OS layers - they
might be hidden inside the OS, but you won’t see them for a while in Linux user code).

fork will only select a TC which is both "free" (TCStatus[A] is currently zero) and which is specifically marked
as usable by fork because TCStatus[DA] is set.

fork may fail if a suitable TC isn’t waiting at the “taxi-rank”. In that case you get an exception (“Thread Over-
flow”) which an OS may catch and fix up before restarting the application; that way the application remains
unaware of the problem. This provides the illusion of an indefinite supply of TCs, in the same way that a virtual
memory system provides an indefinite supply of memory - you’ll hear this described as that “fork has been vir-
tualized” or made Virtualizable.

yield $0 has a matching "Thread Underflow" exception, which occurs when you’re about to reach a situation
where all for-hire TCs are parked (because then the system might stop forever, with no threads running the code
which might make another thread run...).

There’s a lot more to say about yield, see the bullet below and Section 2.8.1, "Yield, Yield Qualifiers and threads
waiting for hardware events".

• mftr rd,trno,u,sel,h and mttr rt,trno,u,sel,h: are privileged (CP0) instructions ("move to/
move from thread register") which provide read/write access to another TC’s registers.

The other TC is identified by VPEControl[TargTC]. The trno,u,sel fields identify which register of that TC
you are accessing. Their encoding is complicated: we’ll present details in Table 2.1 below, but here’s a quick
summary:

– When u==0, trno is a CP0 register and sel is the auxiliary 3-bit "select" field found in mtc0/mfc0;

– When u==1 and sel==0, trno is a general purpose register;

– When u==1 and sel>0, you get to access more exotic registers, as detailed in Table 2.1 below.

The h value should be specified as 1 when you’re obtaining the high half of a register which is double the size of
a GPR. In other cases, omit it. However, this argument is not required for the multiply unit accumulators, where
the low and high half have separate trno register numbers.

That’s fairly confusing, and the details are presented again in Table 2.1.
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The hardware does nothing, inherently, to make sure that register changes as a result of other-thread activity are
seen tidily; unless you are really sure that the other thread is currently leaving the register alone, it’s safer to
ensure that the other TC is halted (shut down for maintenance) before mftr/mttr will work reliably.

When disassembling binary code it is painful to have to hand-decode the trno,u,sel,h fields, so tool provid-
ers are recommended to support the alternative “idioms” described in Table 2.3 below, which are probably more
memorable than binary numbers. Most tools will be symmetric, so you will be able to write the idioms too: but
that doesn’t necessarily mean you should write code with them. You will, I hope, use meaningfully-named C pre-
processor constants for all the various fields in your assembly source code, so it may be kinder on those who
come after you if you expect them to remember just the mttr/mftr mnemonics.

Note that access to the registers of a TC affiliated to a different VPE is available only when VPEConf0[MVP] is
set - it’s often used as a safety-catch. In some environments (where you’re not meant to be able to get at the other
VPE’s state) you’ll find you can’t set VPEConf0[MVP].

If you attempt to read a register number which is not valid on your CPU, you will get an all-ones (-1) value back.

• dmt: suspend all other threads affiliated to the same VPE.

Under the hood this atomically clears the VPEControl[TE] bit, returning the original value of VPEControl to an

optional register argument1; so it is convenient to bracket a piece of code which needs to be single-threaded
within the VPE by:

dmt rt
ehb # need hazard barrier to be sure it took effect
... # guaranteed to be the only live TC in this VPE
mtc0 rt, VPEControl

Table 2.1 MTTR/MFTR - "U" and "SEL" values
u sel trno Other TC’s register type

0 0-7 0-31 CP0 registers.
1 0 0-31 General-purpose integer registers
1 1 0 Multiply unit lo and hi respectively.

1

4 Low and high half (respectively) of DSP accumulator 1
5

8 Low and high half (respectively) of DSP accumulator 2
9

12 Low and high half (respectively) of DSP accumulator 3
13

16 DSPControl register.
1 2 0-31 Floating point (CP1) registers
1 3 0-31 Floating point control registers, as usually accessible with cfc1/

ctc1.
1 4 0-31 Co-processor 2 data and control register sets, respectively.

Implementations are free to define large CP2 register sets; the MT
ASE provides an extra 5-bit "rx" field to provide more bits for
selecting the CP2 register, but the MT ASE does not define a stan-
dard assembler syntax to generate it.

1 5 0-31

1. They fit in with the encoding already used for atomic update of a CP0 register by the disable-interrupts instruction di etc.
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The “hazard barrier” should always be used when you change some CP0 condition and need to know it’s taken
effect when you run a subsequent instruction - see Section 7.1, "Hazard barrier instructions".

OS code which updates registers and resources which are only replicated per-VPE will typically need this kind of
protection, unless already multithreading-protected by something higher-level.

The emt instruction atomically sets the VPEControl[TE] bit and returns the old value. It is relatively rarely used;
it’s more robust to replace the whole original value of VPEControl with an mtc0, because then things still work
if you inadvertently nest one single-threaded block within another.

• dvpe: suspend/un-suspend all other threads, even those in other VPEs. In many systems VPE independence is
much prized, and then this instruction is likely to be restricted to initialization software. Under the hood it clears
the MVPControl[EVP] bit, returning the old value. Again, there’s an evpe instruction, but a single-threaded block
is better terminated by restoring the whole MVPControl register with an mtc0.

• yield rd,rs: a multi-purpose instruction, whose action depends on the value in rs. If and when it returns, rd
is set to a bit-vector which shows the active inputs to yield - at least those enabled by the YQMask register.
More in the section below.

So:

• When rs == 0: (also discussed under the bullet called “fork” at the start of Section 2.8, "MIPS®
Multithreading ASE - new instructions") terminate the thread and clear the TCStatus[A] bit, permitting re-
allocation to another purpose by fork. If this was the only live TC with TCStatus[DA] set (that is, the last
TC in the fork pool), you get a “thread underflow” exception.

• When rs == -1: polite pause while other threads get a chance to run. To be more precise, the thread will be
stopped briefly while the yield indication is sent out to an external scheduling policy manager, if fitted (see
Section 2.5, "Thread-scheduling decisions and the policy manager".) Such a policy manager may respond, in
particular, to changes communicated by writing the TCSchedule and/or VPESchedule registers.

After this sort of yield this thread will not run again for long enough that the policy manager has time to
respond. But the thread hasn’t been stopped and will normally run again soon, at the priority newly deter-
mined by the policy manager.

• When rs == -2: has no scheduling effect, purely done for the value delivered to rd. And a yield -2 never
produces a “yield scheduler” exception.

• when rs > 0: waits for one or more of a set of signals to be asserted; from up to 31 signals available on your
CPU, it is sensitive only to those selected by a “1” bit in the rs value. That’s complicated, see Section 2.8.1,
"Yield, Yield Qualifiers and threads waiting for hardware events" below.

But in particular, if the rs value includes a bit which is not set in YQMask, you get an "invalid qualifier"
exception.

Software can ensure that any yield which would deschedule a thread (or any yield -1 whose return status
would be zero) produces a "yield scheduler" exception. A secure OS might do that because it wants to “scrub”
the TC’s registers of any application data before the TC is returned to the free pool. To achieve this effect set
VPEControl[YSI] (the "did any work" test depends on TCStatus[DT].)

A yield instruction must not be in a branch delay slot.
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2.8.1 Yield, Yield Qualifiers and threads waiting for hardware events

When the rs argument of the yield rs instruction is positive, the thread waits for a hardware condition; the thread
will wait until the bitwise-and of rs and the hardware signal vector is non-zero. This is a cheap and efficient mecha-
nism to get a thread to wait on the state of some input signal.

Cores in the 34K family may have up to 16 external hardware signals attached. Because the yield instruction is
available to user (low-privilege) software, you might not want it to have sight of all your hardware signals. The CP0
register YQMask is a bit-field where a “1” bit marks an incoming signal as accessible to the yield instruction.

In any OS running more threads than TCs you might want to reclaim a TC blocked on such a yield. If you need to
do that while continuing to monitor the condition, then you’ll probably want your system integrator to ensure that the
yield condition is also available as an interrupt, so you can get the OS’ attention when the condition happens.

The OS can zero-out corresponding bits 0-15 of YQMask to prevent them being used - a yield rs which attempts
to use one of those bits will result in an exception.

In the two-operand form yield rd,rs the rd register gets a result, which is a bit-map with a 1 for every active
yield input which is enabled by YQMask (bits which are zeroed in YQMask may return any value, don’t rely on them).
The single-register form yield rs is really yield $0,rs.

2.8.2 All MT instructions in alphabetical order

That’s in Table 2.2 - but not quite all. There are a large number of convenience mnemonics (“assembler idioms”)
which are not separate instructions, but which map onto some variant of the access-other-TCs-register instructions
mttr and mftr. Rather than fill the table with these, we’ve consigned them to Table 2.3 below. If you’re looking up
an unfamiliar instruction, please look in both tables.

Table 2.2 MT instruction summary in alphabetical order

Instruction Brief Description

dmt rt Clear VPEControl[TE], which suspends execution of all other TCs affiliated to the same
VPE. The rt register receives the original value of VPEControl; if you don’t specify rt it
defaults to $0.

dvpe rt Disable all multithreading, including any other TCs affiliated to other VPEs, leaving this
thread running alone. Implemented as an atomic clear of the MVPControl[EVP] bit. If you
specify a register rt it receives the previous contents of the MVPControl register.

emt The “enable” pairs of dmt/dvpe respectively.
You may not need these instructions: when you’ve finished a section of code which must
be single-threaded in some sense, it may be preferable to restore the whole VPEControl/
MVPControl register from the value you got back when you ran the disable instruction, as
suggested in the description of dmt in the running text above.

evpe

fork rd,rs,rt Find a TC and activate it, so it starts at rs. The new thread’s rd register will be set to the
value provided in rt. Lots more details above.
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mftr rd,trno,u,sel,h “Move from thread register” and “Move to thread register” - get/set the value of a register
belonging to some other TC, using the general-purpose register rd as a sink, or rt as a
source. For a per-VPE register, you will access the VPE affiliated to the target register - so
to access a VPE first set up a TC affiliated to it.
The other TC is identified by VPEControl[TargTC], and the register you’re accessing is
selected by all of trno, u and sel - as described above or in Section 2.1, "MTTR/MFTR -
"U" and "SEL" values".

mttr rt,trno,u,sel,h

yield rd,rs A multi-purpose instruction, whose action depends on the value in rs. When rs==0, it ter-
minates the thread and makes the TC available for a subsequent fork.
When rs==-1, pauses while other threads run and any scheduling policy change filters
through.
yield with rs==-2 is just done to poll yield inputs.
When rs>0, you wait for one of the yield input signals, but only one for which there’s a
corresponding bit set in rs.

Table 2.3 MTTR/MFTR "assembler idioms" in alphabetical order
Write as Equivalent Description

cftc1 rd,ft mftr rd,ft,1,3 Get data from/send data to another TC’s floating-point (coprocessor
1, CP1) control register ft.cttc1 rt,ft mttr rd,ft,1,3

mftc0 rd,rt mftr rd,tc0r,0 Read other TC’s CP0 register.
mftc0 rd,rt,sel mftr rd,tc0r,0,sel

mftc1 rd,ft mftr rd,ft,1,2,0 Read low 32 bits from other TC’s floating point data register.
mftdsp rd mftr rd,16,1,1 Read other thread’s DSPControl register.
mftgpr rd,rt mftr rd,rt,1,0 Read other thread’s general purpose register rt.
mfthc1 rd,ft mftr rd,ft,1,2,1 Read high 32 bits from other TC’s floating point data register.
mfthi rd mftr rd,1,1,1 Read the other TC’s hi multiply/divide unit register, which is the

same as the first of...
mfthi rd,ac0 mftr rd,1,1,1 Read the high half of one of the other TC’s ac0-3 DSP accumula-

tors.mfthi rd,ac1 mftr rd,5,1,1

mfthi rd,ac2 mftr rd,9,1,1

mfthi rd,ac3 mftr rd,13,1,1

mftlo rd mftr rd,0,1,1 Read the other TC’s lo multiply/divide unit register, which is the
same as the zeroth of...

mftlo rd,ac0 mftr rd,0,1,1 Read the low half of the other TC’s ac0-3 DSP accumulators.
mftlo rd,ac1 mftr rd,4,1,1

mftlo rd,ac2 mftr rd,8,1,1

mftlo rd,ac3 mftr rd,12,1,1

mttc0 rt,rd mttr rt,tc0r,0 Write other TC’s CP0 register.
mttc0 rt,rd,sel mttr rt,tc0r,0,sel

mttc1 rt,fd mttr rt,fd,1,2,0 Write data from rt to the high half of the other TC’s floating point
register fd.

mttdsp rt mttr rt,16,1,1 Write to the other TC’s DSPControl register.
mttgpr rt,rd mttr rt,rd,1,0 Write to the other TC’s general purpose register rd.
mtthc1 rt,fd mttr rt,fd,1,2,1 Write data from rt to the low half of the other TC’s floating point

register fd.

Table 2.2 MT instruction summary in alphabetical order

Instruction Brief Description
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mtthi rt mttr rt,1,1,1 Write to the other TC’s hi multiply unit register, which is the same
as the zeroth of...

mtthi rt,ac0 mttr rt,1,1,1 Write to high part of the other TC’s ac0-3 accumulator.
mtthi rt,ac1 mttr rt,5,1,1

mtthi rt,ac2 mttr rt,9,1,1

mtthi rt,ac3 mttr rt,13,1,1

mttlo rt mttr rt,0,1,1 Write to the other TC’s lo multiply unit register, which is the same
as the zeroth of...

mttlo rt,ac0 mttr rt,0,1,1 Write to low part of the other TC’s ac0-3 accumulator.
mttlo rt,ac1 mttr rt,4,1,1

mttlo rt,ac2 mttr rt,8,1,1

mttlo rt,ac3 mttr rt,12,1,1

Table 2.3 MTTR/MFTR "assembler idioms" in alphabetical order
Write as Equivalent Description
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2.9 Multithreading ASE - CP0 (privileged) registers

All the CP0 registers new to or affected by the MT ASE are in Table 2.4.

2.9.1 What CP0 registers are per-TC, per-VPE and per-CPU?

At first sight the CP0 register map looks like quite a chaotic mixture of fields replicated per-TC, per-VPE or not repli-
cated at all. But in fact the rules are fairly simple, and there are only a few special cases:

• All registers called "TCxx" are per-TC.

Table 2.4 CP0 registers required by MIPS® MT ASE
Register Description

Per-TC registers
TCStatus Per-TC run-time control/status fields. Includes alternate views of per-TC fields in old CP0 registers.
TCBind VPE affiliation and own TC number of this TC.
TCHalt Per-TC - write one to halt the TC for maintenance, zero to let it run again. No further description

needed.
TCRestart Per-TC - address of instruction the TC will run next. Unambiguous only when the TC is halted.

Writing TCRestart (to control where the TC executes from next time it is made live) has side-
effects; in particular it clears the link bit which associates a load-linked/store-conditional pair, see
Section 3.5, "Synchronization: "ll" and "sc" instructions implementation".

TCContext per-TC 32-bit read-write scratch register for OS use, no hardware-interpreted fields.
Per-VPE registers
VPEControl Per-VPE - status and control fields for exception and mftr/mttr instruction support.
VPEConf0-1 read-only status of VPE setup
YQMask bitfield where “1” bits define valid select bits for a yield instruction - see Section 2.8.1, "Yield,

Yield Qualifiers and threads waiting for hardware events".
VPEopt Can be used to mark any cache "way" (a quarter) of the primary I- and D-caches as inaccessible to

the owning VPE, to keep it clear for the other one.
SRSConf0-4 Fixes which TC’s GPRs are recycled as shadow register sets.
Whole-CPU control and availability of MT resources
MVPControl writable register to determine how multiprocessing facilities work.
MVPConf0-1 read-only summary of CPU MT resources
Software hints and controls on thread scheduling
TCSchedule Per-TC, writable register to influence thread scheduling. It’s not really part of the core, and the

description is for our sample thread scheduling policy manager.
VPESchedule Per-VPE, writable register to influence scheduling
TCScheFBack Optional read-only register providing statistical information about thread scheduling.
New fields in old registers
EBase[CPUNum] Identity of running VPE within CPU
Config3[MT] set if this CPU implements the MIPS MT ASE.
Debug[OffLine] a per-TC bit which a debugger can set to quiesce a TC while it debugs another thread (but without

affecting any non-debug state).
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• All other CP0 registers (not called "TCxx") are per-VPE except for:

– MVPControl, MVPConf0-1 are not replicated, there’s just one set on a CPU.

– The performance counter count and control registers are per-CPU.

– A handful of fields in pre-MT MIPS32-standard registers are replicated per-TC: they include those which are
found in TCStatus as fields called “Txx”, plus the debugger controls Debug[OffLine] (a “thread halt” control
for debuggers) and Debug[SSt] (single-step).

Like all other CP0 registers, many fields are not initialized by hardware when the CPU is reset. And - special for MT
- CP0 registers other than those belonging to VPE #0 and TC #0 are not initialized at all.Unless you are confident
that random contents in some particular register are safe, it’s your responsibility to write registers to sensible values.

2.9.2 VPEControl

In VPEControl:

YSI, GSI: "intercept" bits for yield and Gating Storage operations.

By setting one or both of these bits 1, an OS can arrange to be notified (by an exception) if any thread would oth-
erwise become blocked by a yield instruction, or on an access to gating storage. The exception will only hap-
pen if the TC’s TCStatus[DT] bit is set, that is if the TC has run an instruction since it was last deallocated.

YSI affects any yield instruction which would block; but a yield which tests for a condition which is already
true, or a yield -2 will not be affected (a yield -2 is just a poll - see the bullet on "yield")

GSI affects any gating storage access which will block the thread1.

EXCPT: encodes the cause of the last thread exception. This refines the information returned by Cause[ExcCode] - we
don’t have enough reserved values to encode all the thread exceptions separately. Like the old cause register field,
VPEControl[EXCPT] is only valid so long as the TC remains in exception mode (recall that in exception mode only
one TC within the VPE may run).

The possible values are:

Figure 2-1 Fields in the VPEControl register
31 22 21 20 19 18 16 15 14 8 7 0

VPEControl 0 YSI GSI 0 EXCPT TE 0 TargTC

1. Gating storage operations are uncached, and may be slow; but GSI won’t lead to an exception because the access is slow, only
if the gating storage interface is told that the operation is blocked.

Table 2.5 Thread exception codes in VPEControl[EXCPT]
0 Thread overflow on fork.
1 Thread underflow on yield.
2 Bad qualifier fed to yield.
3 Exception on gating storage operation
4 yield which would have blocked run while VPEControl[YSI] is set to 1.
5 Gating storage access which would have blocked attempted while

VPEControl[GSI] is set to 1.
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TE: "enable multithreading" - when clear, only one TC attached to the VPE is allowed to issue instructions. You
normally set/unset this using the dmt/emt instructions.

TargTC: selects the TC number of the "other thread context" in the mttr/mftr instructions - TCs are numbered from
0 upward. There isn’t room to encode the TC number in the instructions. Note that since the whole of VPEControl is
a per-VPE register, TC-multithreaded software will need some kind of lock (perhaps dmt/emt brackets) around any
code which uses mttr/mftr.

2.9.3 TCRestart, TCHalt and TCContextt

Three registers without internal fields:

• TCRestart holds the thread’s “PC” - more accurately, when the TC is halted it holds the instruction address
where the TC will restart. If a TC is to retry an instruction in a delay slot, TCRestart will point to the branch but
the TCStatus[TDS] flag will be set.

• TCHalt: just write a 1 to the register, and the TC will halt and will be safe to inspect and reprogram. Write a zero
to let it run again. TCHalt is for the use of MT-aware OS code.

• TCContext is a pure 32-bit software register, without any hardware effect. OS software finds it useful to have a
per-TC register where it can write an ID or key pointer which identifies the thread.

2.9.4 TCStatus

TCU3-0, TMX, TCEE, TKSU, TASID: These fields - most of those starting with a "T", in fact - provide convenient
alternate views of some fields in legacy CP0 registers. They are fields which, with MIPS MT, need to be replicated
per-TC. This is valuable because code can change them without the difficulty of doing a non-atomic read-modify-
write sequence on one of the legacy registers (which would mean having to read-write many fields which are shared
with any other TCs in the VPE.)

The fields listed are views of the Status[CU0-3], Status[MX], Status[CEE], Status[KSU] and EntryHi[ASID] fields
respectively, and to get a complete view of what any of them do you are recommended to look at the notes on
each of those CP0 registers.

We’ll deal with these alternate-view fields first:

TCU3-0: set a bit to enable this TC to run instructions for the corresponding co-processor. There are four bits but only
two feasible co-processors: CP1 is the floating point unit (if fitted) and CP2 is available for custom use. CP3 is not
available on cores in the 34K family, so TCStatus[TCU3] always reads zero.

The floating-point unit available as coprocessor 1 for 34K family cores has only one set of registers, so it may only
be used by one TC. It is the OS’ responsibility to make sure that’s done. Custom or future coprocessors may
replicate all their state per-TC (so they may be freely multithreaded) or provide fewer, perhaps just one, register
set.

TMX: another view of Status[MX], which is the enable bit for the instructions in the MIPS DSP ASE (in theory it
plays the same role for the older but less-used MDMX, but that will never be found in a 34K family core.) It’s
visible here because it’s a per-TC field.

Figure 2-2 Fields in the TCStatus register
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0
TCU3-0 TMX 0 RNST 0 TDS DT 0 TCEE 0 DA 0 A TKSU IXMT 0 TASID
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TCEE: another view of the per-TC Status[CEE] enable bit implemented by a "CorExtend" (user-defined) instruction
block which needs it, usually because it includes some registers which it may need a kernel to save across
exceptions and context switches.

TKSU: a convenient view of the per-TC Status[KSU] bits which determines the privilege state of the CPU.

TASID: a convenient alternative view of the per-TC EntryHi[ASID] field.

RNST: (read-only) status, which can be used to find out why a blocked TC is blocked, with values meaning:

TDS: qualifies the per-TC restart address TCRestart, indicating that the thread is stopped in a branch delay slot (in
which case TCRestart will point to the branch.) An analogue of Cause[BD].

DT: "dirty" bit - set whenever the thread being run by the TC makes progress. More precisely, set when any of this TC’s
instructions completes (though instructions in exception, error-exception or debug mode are not counted); it is also
set if the TC is successfully started as a result of a fork.

This is for the use of an OS overseeing applications forking at user level; it can inspect its free-TC pool and dis-
cover which ones have done any work since last time it looked. This may be important, because a TC which has

done work for one application1 might have some of that application’s data in its registers, and cannot be automat-
ically allocated to a different application for fear of leaking data (applications are not supposed to see one
another’s data). The OS must make sure it scrubs all the TC’s registers before that happens; this bit is part of the
mechanism which lets it find out when it needs to scrub.

DA: "dynamically allocatable" - when clear, this TC may not be allocated as a result of a fork.

If as a result a fork can’t find a TC to use, it takes a "thread overflow" exception.

If the only dynamically allocatable and live TC executes a yield (which might lead to the silence of the grave),
it takes a "thread underflow" exception instead.

A: "activated" (sometimes, "allocated"). Can’t run instructions without this bit, which is set by fork and cleared by
yield $0.

IXMT: set 1 to prevent this TC from handling interrupts.

Summary TC status

The TCHalt and TCStatus[A,DA] fields interact as shown in Figure 2.6 and may be best understood together. Note that
the EJTAG debug Debug[OffLine] bit, if set, overrides all of them and prevents the TC from live its thread. OffLine,
though, doesn’t affect whether a TC may be selected by a fork.

0 Not blocked.
1 Asleep after a wait.
2 Blocked on yield (that is, waiting for one or more of the Yield

Qualifier signals to activate).
3 Waiting for gating storage load/store to complete.

1. In a Linux context "process" would be more precise than "application".
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2.9.5 TCBind

CurTC: (read-only) returns the TC’s own identity - the ID of the TC which ran the mfc0 instruction, or which is the
target of a mftr.

The zero field which occupies bits 18-20 below CurTC is reserved by the architectural definition. It can save a
mask operation when you need to use CurTC as an index into an array of 4- or 8-byte objects.

TBE: set by hardware when a transaction causing a bus error is identified as resulting from a load issued by this TC: see
Section 6.3.6, "Bus error exception" for details. It remains set until explicitly written to zero.

CurVPE: the ID number of the VPE affiliation of this TC. You write this field to change a TC’s affiliation, but only
when the "VPE configuration mode" safety-catch bit MVPControl[VPC] is set. In principle it’s possible for a thread to
set its own TC’s affiliation, but that seems fraught with difficulty. This will most often be set by some supervisory
thread using an mttr instruction).

2.9.6 MVPConf0-1 - read-only multithreading-specific configuration information

The MVPConf0-1 registers present a read-only summary of the CPU’s multithreading resources.

MVPConf0[M]: a "continuation" bit - if zero, MVPConf1 isn’t implemented, and acts as if it was all-zero.

MVPConf0[TLBS]: 1 if it’s possible to share the TLB. To do that you’d have to set MVPControl[STLB], see Figure 2-5.

MVPConf0[GS]: reads 1 if the CPU is able to support Gating Storage as described in Section 2.7.1, "Gating storage".

MVPConf0[PCP]: read-only bit. Reads 1 if it’s possible to deny access to one or more primary cache "ways" to each
VPE. This feature must be enabled in MVPControl[CPA] and the way inhibition programmed in VPEopt, as
described in Section 2.9.10, "VPEOpt register - reserve some cache "way" for use of one VPE".

Table 2.6 TC summary state as expressed in per-TC register fields
Register bits What happens to TC

TCHalt TCStatus

[A] [DA]

1 X X TC is halted, fit for inspection and maintenance by software running
on some other TC

0 0 0 TC is not running, nor may it be used by fork.
0 0 1 TC is "parked at the taxi-rank" ready to be used as a result of a

fork instruction
0 1 X TC is working through the instructions of some thread. Maybe it’s

not currently live, but that will be for a thread-specific reason.

Figure 2-3 Fields in the TCBind register
31 29 28 21 20 18 17 16 4 3 0

0 CurTC 0 TBE 0 CurVPE

Figure 2-4 Fields in the MVPConf0-1 registers
31 30 29 28 27 26 25 16 15 14 13 10 9 8 7 0

MVPConf0 M 0 TLBS GS PCP 0 PTLBE TCA 0 PVPE 0 PTC

31 30 29 28 27 20 19 18 17 10 9 8 7 0

MVPConf1 C1M C1F 0 PCX 0 PCP2 0 PCP1
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MVPConf0[PTLBE]: the number of TLB slots which may be provided to different VPEs according to initialization
software. Will read zero - even on a CPU with a sharable TLB - if the TLB configuration has no option other than
shared or split in some fixed way.

MVPConf0[TCA]: reads 1 on 34K, because it is possible to dynamically assign TCs to a VPE (by writing
TCBind[CurVPE].) Other MIPS MT implementations may not let you do that.

MVPConf0[PVPE,PTC]: how many separate VPEs/TCs respectively are available on this CPU (the field encodes
“number of things minus one”, so that zero means “one VPE” (or TC).

MVPConf1[C1M]: the floating point unit (co-processor 1) implements the MDMX™ extension to the instruction set, as
described in [MDMX]. This will always be zero on CPUs in the 34K core family.

MVPConf1[C1F]: co-processor 1 implements 64-bit floating point instructions as defined in [MIPS64].

MVPConf1[PCX,PCP2,PCP1]: how many register set contexts are available for CorExtend™, co-processor 2 and co-
processor 1 respectively.

2.9.7 MVPControl Register - CPU-wide VPE control

MVPControl is a read/write per-CPU control/status register.

MVPControl[CPA]: set 1 to enable the per-VPE VPEOpt registers (see Figure 2-7 and notes) to deny a VPE use of one
or more ways of the primary caches. Check MVPConf0[PCP] first, to see whether this feature is available.

MVPControl[STLB]: set to enable TLB sharing between the VPEs, see Section 4.2.2, "Sharing and not sharing the
TLB".

MVPControl[VPC]: "configuration mode" - a heavy-duty safety catch. When this bit is set to "1", it becomes possible to
write to configuration register fields which are read-only on conventional MIPS32-compliant CPUs.

This is obviously a fairly dangerous thing to do, and it’s unlikely to be a good idea to change the configuration
registers except when launching a VPE with software which believes it is re-initializing itself. In particular, make
sure that no other VPE is running by executing a dvpe; ehb sequence - the ehb (“hazard barrier”) instruction
makes sure that subsequent instructions don’t start until the dvpe has taken effect.

But with this bit set ("unsafe"), a MIPS MT CPU can be set up by MT-aware software to configure a VPE with its
choice of CPU resources, then pass that VPE to legacy (non-MIPS-MT-aware) software with that choice of
resources presented by the standard ConfigNN registers.

With this bit zero, the fields in the ConfigNN registers revert to read-only.

MVPControl is writable only if the "master VPE" safety catch VPEConf0[MVP] is set to 1.

MVPControl[EVP]: when clear, instructions will only be executed for the thread which was running when this bit was
cleared - even TCs affiliated to other VPEs will not be run. This bit is usually manipulated with the dvpe/mtc0
instructions.

Figure 2-5 Fields in the MVPControl register
31 4 3 2 1 0

MVPControl 0 CPA STLB VPC EVP
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2.9.8 VPEConf0-1 registers - initializable per VPE resource lists

These are per-VPE registers which are read to show what resources are available to software on the VPE. Some fields
are writable, but that’s only when the VPE-access safety catch VPEConf0[MVP] is already set. That means that setting
your own VPEConf0[MVP] to zero is an irreversible abdication from inter-VPE power if other VPEs do the same.

VPEConf0[XTC]: When only one TC in a VPE is running because the VPE is in exception mode or VPEControl[TE] is
clear, this field identifies that one running TC. XTC can be written by mttr as part of cross-VPE initialization if you
want to initialize a VPE so it starts with just one TC running alone. Anything might happen if you tried to write this
field on a running VPE, so you’re prevented from doing so - the field is not writable unless the target VPE’s
VPEControl[VPA] is zero.

Of course the initializing thread, running such a mttr, will need its own copy of VPEConf0[MVP] set to do cross-
VPE access in the first place.

VPEConf0[TCS,SCS,DCS,ICS]: read-only bits which tell software which caches are shared with at least one other VPE.
The separate bits are for tertiary, secondary, L1 D-cache and L1 I-cache respectively. There’s no way for a 34K core
to be fitted with un-shared caches, so a 34K core will have DCS and ICS set (and will have the other bits set if it has
L2 or L3 cache).

VPEConf0[MVP]: "master virtual processor" - a safety catch bit, which must be set before software can touch registers
in different VPEs (or in the TCs of different VPE affiliation).

It also controls write access to MVPControl.

VPEConf0[VPA]: Virtual Processor Activated. If zero, no TCs bound to this VPE will run.

VPEConf1[NCX,NCP2,NCP1]: number of CorExtend, coprocessor-2 and coprocessor-1/floating-point contexts
available to this VPE. These fields are writable at configuration time to zero, one or the number of TCs affiliated to
the VPE1 and will be reflected in the VPE’s view of Config[UDI] (for CorExtend) and Config1[C2,FP]. If a thread
within the VPE is to run a legacy OS, you can use that to determine whether the legacy software sees UDI, CP2 and/
or floating point capability.

2.9.9 YQMask register - enable yield “conditions”

YQMask is a bit-map where you write a “1” bit to make the corresponding yield condition usable for the
yield mask instruction, as described in Section 2.8.1 “Yield, Yield Qualifiers and threads waiting for hardware
events”.

Figure 2-6 Fields in the VPEConf0-1 registers
31 30 29 28 21 20 19 18 17 16 15 2 1 0

VPEConf0 1 0 XTC 0 TCS SCS DCS ICS 0 MVP VPA

31 28 27 20 19 18 17 10 9 8 7 0

VPEConf1 0 NCX 0 NCP2 0 NCP1

1. If this field was set to “number of TCs” but the number of TCs affiliated to the VPE subsequently changes (it can happen) the
field will be automatically updated.
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2.9.10 VPEOpt register - reserve some cache "way" for use of one VPE

Two OS programs running on separate VPEs of a MIPS MT CPU progress independently of each other, and the
thread scheduling rules usually make sure that each gets a fair proportion of the CPU’s attention. However, one
unavoidable interaction is that threads on both VPEs are competing for the same cache resources.

The 34K core’s primary caches are 4-way set associative, and this is usually enough to provide for the active “work-
ing set” of all loaded threads.

Occasionally a critical routine may need such a good response time that it is unacceptable for it to be dislodged from
the cache by an unrelated thread. Where this affects a tiny piece of code, your best bet is probably to lock the code
concerned into the cache, as described in Section 6.4.8, "Cache locking".

But if some legacy code consigned to the independent environment of one VPE is suffering because of competition
for cache locations from an unrelated program on the other VPE, you may also have the choice of reserving some part
of the cache for the use of a VPE: to check whether this facility is available on your core, test MVPConf0[PCP].

This facility is large-scale, affecting a whole cache “way” - that’s 25% of a cache, removing one out of the four cache
locations available to store any particular cache-line sized piece of memory. It’s implemented by getting a VPE to
sacrifice the ability to load data into one or more cache ways, making it unusable for any of the VPE’s threads.

Caution: You almost certainly shouldn’t do this. This is a facility offered to dig systems out of a very particular kind
of hole. Only use it after careful measurement has convinced you that you have a problem caused by competition for
cache resources, and keep measuring to make sure you’re getting the effect you need.

But once you’re sure: to enable this facility at all, you need to set MVPControl[CPA]. Then to renounce the use of one
of the four cache ways in the I- or D-cache for anything you miss on in future, set the corresponding IWXnn/DWXnn
bit in the VPEOpt register, as shown in Figure 2-7. Since this is done on a per-VPE basis, it’s possible (though odd) to
completely deny yourself use of some part of the cache. After CPU reset these fields are cleared to zero, so if you
don’t need this facility, just ignore it.

2.9.11 Shadow register configuration SRSConf0-4

A TC’s registers can be borrowed and used as a “shadow set” for another TC. These registers control how this is done.
It seemed simpler to combine their description with the rest of the shadow register system in Section 7.3, "Shadow
registers".

2.9.12 Thread scheduling hints - TCSchedule, TCScheFBack, VPESchedule

The TCSchedule, TCScheFBack, and VPESchedule registers are inputs to wholly implementation-dependent logic,
so their description is not in this chapter, but in Section 3.2, "Thread scheduling in the 34K core" below.

Figure 2-7 Fields in the VPEOpt register
31 12 11 8 7 4 3 0

VPEOpt 0 IWX3-0 0 DWX3-0
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How the 34K™ core implements multi-threading

In this chapter:

• Section 3.1, "The 34K™ core pipeline and multithreading" how it all runs.

• Section 3.2, "Thread scheduling in the 34K core"

• Section 3.3, "Inter-thread communication storage (ITC)"

• Section 3.4, "The 34K™ core and interrupts"

3.1 The 34K™ core pipeline and multithreading

The 34K pipeline is shown in Figure 3-1. It inherits the 24K core’s basic pipeline. You can find a simplified descrip-
tion of the 24K core pipeline in [PROG24K], which might be a useful introduction.

Figure 3-1 The 34K™ core pipeline

Notes on the pipeline diagram Figure 3-1:

The 34K core issues one instruction per clock and executes instructions for a particular thread strictly in order. We’ll
say an instruction is "fetched" when it’s read from the I-cache in the IF stage, it’s "issued" when it’s sent to the RF
stage and "executed" when it emerges from the ER stage without causing an exception.

• Instruction fetch unit: The instruction fetch unit ("IFU") occupies the three first stages and is decoupled from the
main pipeline.
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Each TC in the processor has some of its own fetch unit state, and in particular each TC has a dedicated instruc-
tion queue which is kept filled whenever the TC is not stopped.

The IFU works a bit like a dog being taken for a walk. It rushes on ahead as long as the lead will stretch (the IFU,
processing instructions two at a time, can rapidly get ahead). Even though you’re in charge, your dog likes to go
first - and so it is with the IFU. Like a dog, the IFU guesses where you want to go, strongly influenced by its
observations of your habits. If you make an unexpected turn there is a brief hiatus while the dog comes back and
gets up front again... but now we’re anticipating the next bullet on "branch prediction". This kind of design is
called a "decoupled" IFU.

Once instructions are issued from the IFU they are either completed in order or nullified (that is, essentially
turned into a nop - such instructions continue to occupy a pipeline slot). When a thread stops for any reason (see
Section 2.4, "When can’t threads run?") any of its instructions which have entered the main pipeline after the
"stopping" victim will be nullified; the fetch unit holds the last couple of instructions issued in its Skid buffer, so
it isn’t necessarily going to have to go back and fetch the instructions from the I-cache all over again.

Even going back to the skid buffer is an avoidable overhead if the thread which stopped was the last runnable
one. The hardware may detect this condition and decide to stall the main pipeline with the post-blockage instruc-
tions still in it when it knows there are no other runnable threads (in the hardware documents this is called “sin-
gle-threaded mode”).

• Branch prediction: The fetch unit has a couple of ways of predicting the branch target, allowing it to fill a TC’s
instruction buffer speculatively without waiting for the main pipeline to do calculations and report on branch
conditions. It has:

• Target computation: the fetch unit has logic which can compute the target of both PC-relative branches and
long-displacement format jal/j instructions.

• A branch history table: which is shared by all the TCs, is used to guess the direction of conditional branches.
The table is indexed by the low address bits of the instruction’s location, and keeps 2 bits of state for each
slot. It’s surprisingly effective, guessing right over 90% of the time. All branches (including the misnamed
"branch likely" instructions) are treated the same.

• A return prediction stack: a small stack on which the IFU pushes the return address of any subroutine call
instruction. Subroutine return (i.e. jr ra) instructions pop the stack and guess that it delivers the correct
target address.

When multiple TCs are running, only one of them may use this stack. A TC gets to use the stack whenever
all other TCs are blocked for relatively long-term reasons, and gets to keep it (even though conditions
change and other TCs become unblocked) until some other TC qualifies.

When the guess turns out to be wrong or the execution unit encounters an unpredictable computed branch the
execution unit issues a Redirect and nullifies any of the TC’s instructions in the pipe; the IFU has to discard all
queued instructions for this TC, and start fetching again from the corrected address.

• Main pipeline: like the 24K core, the main pipeline is adjusted to provide something more than two clocks for
accessing the L1 caches. It also shares the "skewed ALU" - load/store address calculation is done in the dedi-
cated AG stage ahead of the EX stage where arithmetic and logical functions happen. The skewed ALU keeps the
load-to-use delay down to just one clock.

There’s no such thing as a free lunch; the downside is that a load/store instruction whose address generation
depends on the immediately preceding instruction will have to wait for one clock. Compilers probably find it eas-
ier to move the address calculation back one place in the instruction stream, rather than to find yet another useful
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instruction which can be moved between the load and use of the data. But code which follows a pointer chain is
guaranteed to take at least three cycles per pointer.

3.1.1 Resource limits and consequences

The long pipeline, data interlocks, and the semi-autonomous IFU mean that the whole pipeline does not advance in
lock-step as in the simplest MIPS architecture CPUs. Updates to internal states are not so easy to schedule at fixed
times; instead they tend to wait in queues until a convenient moment. Most of the time, the convenient moment
arrives quickly and there is no software-visible effect. But sometimes an unusual code sequence causes updates to be
generated faster than they can be dealt with, the queue fills up and execution of the thread - perhaps the whole CPU
pipeline - has to be stopped while the updates are done.

Queues which can fill up include:

• Cache refills in flight: there can be four or nine, at build-time option. In a single-threaded application you’re
unlikely to reach this limit unless you are using prefetch or otherwise deliberately optimizing loops. If a series of
prefetches use all available resources, the next unrelated load-miss will stall the pipeline.

A hard-working multi-threading application might get there more often - hence the option to have nine entries in
the "load data queue" in the 34K core.

• Non-blocking loads to registers: the 34K core has enough resources to have one load outstanding on each TC.
They’re used not just for non-blocking loads, but also for a TC blocked on gating storage.

That’s enough so that compiled code is unlikely to reach this limit.

• Lines evicted from the cache awaiting writeback (four): the 34K core’s ability to write data will in almost all cir-
cumstances exceed the bandwidth available to memory: this queue will absorb short bursts without delaying any-
thing. A long enough burst of writes will eventually slow to memory speed.

• Register file write port (just one): that means that only one instruction can write a register value in each clock.
For instructions which execute down the main CPU pipe this is not in the least problematic: they arrive at their
register-write stage one at a time in sequence. But instructions with their own pipeline (multiply/divide opera-
tions, loads/stores, coprocessor operations) any result delivered to a general-purpose register must wait for a slot
in which the main-pipeline instruction doesn’t need to write a register. Typically, this happens very soon: but it
depends on the instruction sequence.

3.1.2 Choosing instruction to issue

There’s a critical piece of logic called the Dispatch Scheduler running in the IS/IT pipeline stages. It’s job is to decide
which TC’s instruction to issue next, and that’s the subject of the next section.

But if we look at the whole CPU, we see that the instructions in the main pipeline are not necessarily (nor even usu-
ally) all from the same TC. The hardware carries a TC number down the pipeline with each instruction, and that TC
number is used to extend any register number defined by the instruction to read and write a register from the TC’s
own set.

This is fine, so long as no threads block. When a thread blocks, the fetch unit gets to know about it and will not issue
any more instructions for that TC; but by that time some more instructions for that TC are likely to be in the main
pipeline. These instructions are now doomed, but must be allowed to continue through the pipeline: otherwise

instructions from unrelated, unblocked TCs could not make progress1. The doomed instructions are marked as "nulli-
fied": they will cause no exception, no load or store, and no register write-back.
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Meanwhile, the TC’s own instruction queue is told of the blockage, and told where to restart after the thread is
unblocked. The instruction at the head of the TC’s instruction queue won’t be the restart one (because one or more
instructions were entered into the main pipeline and nullified). To avoid discarding the whole instruction queue and
re-fetching all the instructions, the instruction queue includes a "skid buffer", which keeps a copy of a couple of
instructions which have been issued but might still be nullified. So the TC which is stopped can back-up the skid
buffer and wait to be running again.

3.2 Thread scheduling in the 34K core

In any multithreading CPU you have somehow to determine which instruction to run next.

The logic which does this job in the 34K core is called the Dispatch Scheduler ("DS"). On every cycle the DS selects
an instruction from one of the per-TC instruction buffers and puts it into the main pipeline. Its decision is influenced
by signals from the main pipeline but also by per-TC signals delivered from a piece of logic outside the core, the
Policy Manager (PM). The simplest PMs just tie some interface signals to fixed levels; there are others which just
feed back some bit-fields from the TCSchedule and VPESchedule registers. Customers can use a MIPS-supplied PM
or create their own - for more details see Section 3.2.3, "Policy managers available for the 34K™ core family".

Instructions are fetched at the front of the IFU: so how do we choose the TC for which we’ll fetch a pair of instruc-
tions for this clock? That’s fairly simple. Fetch will rotate through each running TC which has room on its instruction
queue (though there are minor tweaks in the hardware so an empty queue gets attention quickly).

3.2.1 The Dispatch Scheduler

The dispatch scheduler computes a priority for each TC. Where there are TCs with different priorities, it will do a
cycle-by-cycle round-robin between the highest-priority TCs which are running.

The priority calculation includes the following bits, in something like this order:

• The MS bit represents "running": that means the priority mechanism automatically makes sure that we avoid
selecting an instruction from a blocked TC (and we don’t need any special purpose logic to do that).

• The priority includes the 2-bit per-TC priority which is supplied by the Policy Manager.

• The LS "priority" bits are for "round-robin" - again, the priority check is overloaded to implement the round-
robin algorithm for otherwise-equal-priority TCs.

Along with the real TCs, the DS can have one or more Relax TC numbers; when a "relax" number wins the arbitration
no instruction is issued, and perhaps some energy is saved. This feature is controlled from the external policy man-
ager (see below) and in particular the VPESchedule register.

3.2.2 Policy manager interface

The interface is hardware, really. But if you are programming a core equipped with a custom PM, you probably need
to know something about the hardware interface.

The TCSchedule and VPESchedule registers (if implemented at all) are inside the policy manager and their values
may influence its behavior in any way the designer thinks fit.

1. If there is only one running thread (so nothing else can happen if the stopped thread is evicted from the pipeline) the whole
34K pipeline may be stalled.
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The policy manager supplies the core with:

• A 2-bit "group number" for each TC, mapping each onto one of four "scheduling groups".

• A 2-bit priority for every group. A TC then gets a priority from its group, which influences the internal dispatch
scheduler as to which TC’s instruction to schedule next.

• A per-TC "block" signal which when asserted freezes the TC completely. This is not used (that is, it’s hard-wired
deasserted) in MIPS Technologies’ own PM designs.

• A set of "relax" signals corresponding to a bogus "relax" TC for each VPE; each has its own 2-bit priority and an
enable.

The PM has access to many signals from the core. Per-TC information includes:

• VPE membership

• Instruction completion strobe.

(Signals below here are not used by any MIPS-designed PM):

• TC state: running, yielded, halted, suspended, waiting ITC, wait, used as SRS.

• TC running, as used by the dispatch scheduler. Note, though, that by the time the PM acts on signals like this it is
always somewhat late; so it would be foolish to build hardware which attempted to respond to core signals with-
out any "averaging".

• TC issue strobe, from DS.

• "TC has been forked". A 1-clock pulse asserted as a fork instruction completes.

Then there’s some per-VPE information: the basic debug, exception and error-level bits. These are not used by any
MIPS Technologies PM.

3.2.3 Policy managers available for the 34K™ core family

MIPS Technologies will ship the core with a couple of worked-example PMs, which themselves will be useful for
many purposes. You can choose between:

Equal priority (Basic round-robin)

Just wire all the TC priority group values the same, and disable the do-nothing "relax" field in VPESchedule. Then
you’ll get simple round-robin influenced only by the heuristics used by the core to keep its pipeline full.

Many applications will work just fine with this simple mechanism. You are positively recommended to avoid using
anything more complicated until you really understand why!

Fixed priority

Hard-wire TC groups and priorities as required, and disable "relax". TCs of equal priority will round-robin, but the
scheduler will favor higher-priority TCs.
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The most likely arrangement is a two-level scheme offering higher priority for TCs to be used for threads which both
(a) have real-time deadlines, and (b) can be trusted not to consume excess CPU cycles when they have no real work to
do.

The "Weighted Round Robin" (WRR) policy manager

It seems like a MIPS MT CPU with two running TCs can only be told to make them equal or to give one uncondi-
tional priority over the other. You might be interested in a system which - instead - would ensure that one of the TCs
consistently got more cycles than the other, but that the less-favoured TC wouldn’t be starved. You can do that, by
feeding the CPU with a rapidly-changing set of priorities which average out to what you want.

The building block of this is a machine which runs through a sequence of states, allowing us to provide four distinct
priority “groups”: other things being equal, TCs in groups 0-3 get respectively 1/15, 2/15, 4/15 and 8/15 of the CPU.
In our policy manager, we can now maintain a “priority group number” for each TC and have it turned into a cycle-
by-cycle priority to achieve our goal.

We run a 15-cycle counter and in each cycle of 15 award different priorities to the groups as shown in Table 3.1:

The WRR PM uses dynamic priorities as shown above. You program it through the TCSchedule register, shown at
Figure 3-2.

TCSchedule and VPESchedule have lots of space for use by future (more sophisticated) policy managers. The
fields defined are as follows:

STP: set 1 to prevent the associated TC running any instructions at all; for VPESchedule[STP] it disables the “relax”
issue-nothing condition, which can be scheduled to save power.

GRP: determines which of the four priority groups this TC will be in, as described above; for VPESchedule[GRP]
this is the scheduling group for the “relax” condition.

This policy manager does not define a VPEScheFBack register.

TCScheFBack register

TCScheFBack counts up when any instruction is completed by this TC; it is an unsigned 32-bit value, which satu-
rates at the maximum representable value. It is software’s job to write it to zero or some other low value periodically.

Table 3.1 Dynamic priorities for finer resolution - group priority sequences
Priority in cycle (higher is better)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group0 0 1 0 1 0 1 0 3 0 1 0 1 0 1 0
Group1 1 0 1 3 1 0 2 1 2 0 1 3 1 0 2
Group2 2 3 2 0 2 3 1 2 1 3 2 0 2 3 1
Group3 3 2 3 2 3 2 3 0 3 2 3 2 3 2 3

Figure 3-2 Fields in the TCSchedule and VPESchedule registers (WRR policy manager)
31 4 3 2 1 0

STP 0 GRP
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3.3 Inter-thread communication storage (ITC)

ITC locations are magic memory locations used to provide low-level thread synchronization - which might be inter-
thread (hence "ITC", from "Inter-Thread Communication storage") but could also be between customer-specific hard-
ware and the software thread. Because ITC locations are places where threads wait for potentially long periods of
time, they’re accessed - always uncached - as Gating Storage - described in Section 2.7.1, "Gating storage" above.
The ITC block is a piece of logic outside of the 34K core and connects through the gating storage interface. Because
it’s outside the core, SoC integrators are free to use the MIPS-supplied example logic in whole, in part, or to write
their own. This section only describes the features of the sample ITC block supplied in the core package.

Each ITC Cell presents 32 bits of data. You should read/write these locations only as 32-bit data: partial-word loads
and stores may misbehave. Be careful about compiled code too, to make sure optimization doesn’t remove or alter
any load or store operations. There are 16 different "views" of the same cell, all mapped to double-word boundaries
for compatibility with 64-bit implementations, so each cell occupies 16×64-bits (128 bytes) of memory space. The
different views have behaviors designed to support efficient implementations of popular synchronization operations,
as listed in Table 3.2. You can build your system with some or all of the ITC cells being FIFOs; to find out which cells
are FIFOs look at the fields in the status view, described in Figure 3-3.

Table 3.2 ITC cell views and what they do
Address Behavior
within

cell
0 "bypass": load/store just read and write the data, without affecting the flags.

If the cell is a FIFO, you write the newest entry and read the oldest (but without pushing the FIFO).
8 "status" view: read or write cell status as shown in Figure 3-3.

16 "empty/full" synchronized view: the cell remembers whether anything has been written to it making it non-
empty (and if it’s not a FIFO, making it full at once). Loads from an empty cell block, as do stores to a full cell.
A load from a full cell makes it non-full, and (eventually, if it’s a FIFO) might empty it.

24 Empty/Full "try" (non-blocking) view. A load from an empty cell returns, but the data is always zero. A store
to a full cell is quietly discarded, and the thread continues to run; but (more usefully) you can use an sc (store-
conditional) instruction targeting this view and it will return 1 if the data was written, 0 if it was discarded.

32 "P/V" synchronized view: this implements a "P/V" counting semaphore. This synchronization trick was
invented by Dijkstra - "p" and "v" are the "wait if zero, then count down" and "count up" functions respec-
tively.
A load from a zero cell blocks until a non-zero value appears. Otherwise the load returns the value and (atom-
ically) decrements the stored value.

Any store causes an atomic increment of the cell value, up to a maximum value of 216-1, at which it saturates.
Stores never block.
P/V operations do not modify the empty and full bits, which should both be cleared before an entry is used for
P/V purposes.
The P/V view of a FIFO location doesn’t make sense, and the result of any such access is undefined.

40 P/V "try" (non-blocking) view. Same as the synchronized P/V view, except that a load does not block, even if
the cell value is zero.
Again, don’t use this view for a FIFO cell

48-56 Reserved for future versions of the MIPS MT ASE.
64-120 Implementation-dependent views.

Figure 3-3 Field layout in an ITC cell status view
31 21 20 18 17 16 15 2 1 0

0 FIFO_PTR FIFO T 0 Full Empty
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The fields in the ITC cell status view mean:

FIFO_PTR: the index of the oldest FIFO entry (on a read that’s the next to be returned), but will read zero unless this is
a FIFO cell. Write the ITC status view with FIFO_PTR zero, Full = 0 and Empty = 1 to reset the FIFO.

FIFO: (read-only) 1 if this cell is a FIFO (that is, it has more than one word of storage.) In the ITC implementation
distributed with the 34K family, all ITC FIFOs have four words of storage.

T: "trap" bit - causes any data access (i.e. any "empty/full" or "P/V" access) to this cell to result in an exception. Set by
an OS which wants to keep track of reads and writes, perhaps because it’s recycled a TC which was waiting here and
wants to know when it might have been unblocked.

Full/Empty: described in Table 3.2. There are separate full and empty bits to allow ITC cells to quietly grow into FIFOs
with multiple words of storage.   Write Empty to 1 to reset the FIFO to a clean empty state.

3.3.1 Configuring ITC base address and cell repeat interval

The configuration information for the ITC space is held in two "tags" accessed by overloading the
cache Index_Load_Tag_D and cache Index_Store_Tag_D instructions (it’s much like the mechanism
used for scratchpad RAM). Set the ErrCtl[ITC] bit to tell the instructions to access ITC space configuration "tags", and
use addresses 0 or 8 in the cache instruction address field:

The ITC-configuration "tags" show up as in Figure 3-4.

What can you do with these?

BaseAddress, AddrMask: allow you to set the ITC starting physical address and region size, with at best a 1Kbyte
resolution. Once this is set up and enabled, all accesses to this physical address range will go to ITC, and will no
longer show up on the main system interface - so these locations will “overlay” anything else you expected to be
there. Take care not to overlap any vital address.

The ITC cells can be put at any address whose alignment matches the total size of the ITC region (if you had 64
ITC cells at 256byte intervals you could place them at any 16Kbyte aligned address).

To do that set AddrMask:

ITC_en: set 1 to use ITC - it’s zero from reset, making ITC invisible until you want it.

Figure 3-4 ITC configuration information
31 10 9 1 0

Addr=0 BaseAddress 0 ITC_En

31 30 20 19 17 16 10 9 3 2 0

Addr=8 M NumEntries 0 AddrMask 0 EntryGrain

AddrMask ITC region size AddrMask ITC region size

0 = 1Kbyte 0xF = 16Kbytes
1 = 2Kbytes 0x1F = 32Kbytes
3 = 4Kbytes 0x3F = 64Kbytes
7 = 8Kbytes 0x7F = 128Kbytes



3.4 The 34K™ core and interrupts

Programming the MIPS32® 34K™ Core Family, Revision 01.30 49

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

NumEntries: a read-only field which tells you how many 32-bit ITC cells are provided1.

EntryGrain: let’s you control the cell spacing. Tightly spaced cells save on memory space, but widely spaced cells
spread across a number of TLB pages, permitting different cells to be mapped to different processes. If you set the
cell spacing very high, you’ll limit the number of cells you can access in the usual ITC region.

When the EntryGrain field is zero, cells are packed at 128-byte intervals. Other values result in cells at intervals

of 128×2EntryGrain bytes, or:

To program these locations first set the ErrCtl[ITC] bit, which tells the cache instruction to access ITC information.
Read the registers to find out how many ITC cells are available; then program your choice of cell interval and base
address, with the region size set to match.

Don’t forget to clear ErrCtl[ITC] afterwards, so that cache operations can continue as usual.

3.4 The 34K™ core and interrupts

As you may recall from Section 2.6.1, "Multithreading and interrupts", the interrupt system is replicated per-VPE; so
the 34K core may have two interrupt systems. Interrupt inputs (including Int0-5, NMI and the EJTAG debug interrupt
DINT) are presented separately for the two VPEs at the core interface.

Only the internally-generated timer and performance counter overflow interrupts are always local to the VPE (you
can find out what interrupt number they use by looking in the IntCtl register shown as Figure 7-1).

In the 34K core any TC which is not interrupt-exempt may handle an interrupt. However, where there is a choice:

• An interrupt will be delivered to any thread which is asleep after a wait instruction (if there is one); otherwise:

• The interrupt will be delivered to any non-exempt, active thread which is not blocked waiting for a gating storage
access; and only then:

• The interrupt will be delivered to an active-but-blocked thread.

See Section 7.2, "MIPS32® Architecture Release 2 - enhanced interrupt system(s)" for information about the inter-
rupt signalling and handling options that the 34K core shares with other MIPS32 CPUs.

3.5 Synchronization: "ll" and "sc" instructions implementation

In coherent multi-processor or software multi-threaded systems, the ll and sc instructions work together to provide
an RMW operation on a memory variable (with an arbitrary modification of the value) which succeeds only if it is
guaranteed to have been atomic - that is, no other thread can have seen the value of the same variable between the
read and the write. Moreover, sc returns a value which reports when atomicity could not be guaranteed, and the store

1. Earlier versions of this specification used a "logarithmic" code for number of entries.

EntryGrain ITC cell interval EntryGrain ITC cell interval

0 = 128bytes 4 = 2Kbytes
1 = 256bytes 5 = 4Kbytes
2 = 512bytes 6 = 8Kbytes
3 = 1Kbyte 7 = 16Kbytes
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wasn’t done; that allows software to build a retry loop to implement atomic operations. The risk of non-atomicity is
detected by the cache snoop logic for cache-coherent multiprocessors, and by the intervention of an exception on
software-scheduled uniprocessors.

The MIPS MT ASE requires that ll/sc also work between concurrent threads on an MT CPU. Each TC is equipped
with a CP0 register called LLAddr, which remembers the physical address (at least to the enclosing 32-byte block) of
the target location of any ll/sc sequence. The 34K core detects possible non-atomicity by checking every write
made by any thread against the LLAddr of all other TCs.

The hardware keeps a single bit of state per TC called a "link bit" - the link bit is not directly visible to software. The
link bit is most often zero, but is set by a ll instruction and then cleared by any condition threatening atomicity. It’s
cleared if:

• Some other TC’s store is to the same block as our LLAddr;

• An eret instruction runs for this TC’s VPE (which means there’s been an exception, which could mean this TC
has been rescheduled in the middle of its sequence);

• Some other software wrote this TC’s TCRestart register to cause it to execute elsewhere. This is to catch condi-
tions where OS software running on some other thread "reschedules" the TC: we don’t want the link bit to sur-
vive such indignities.

Then the sc succeeds only if the link bit is still set when it executes.

In the MIPS MT ASE the sc instruction is also used to provide feedback from a store to an ITC location which might
fail: see Section 3.3, "Inter-thread communication storage (ITC)".



Chapter 4

Programming the MIPS32® 34K™ Core Family, Revision 01.30 51

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

Initializing the 34K™ core - Multi-Threaded bootstrap
issues

You are likely to deal with MIPS MT features at three stages as you boot the system:

• Boot the system, probably without dependence on the MIPS MT extension. It’s good if first-level system boot-
strap (which is bound to be awkward, system-dependent code) is not also sensitive to changes in the CPU feature
set.

So the first-level bootstrap typically wants to make sure that any new multithreading behavior is suppressed until
wanted: see Section 4.1, "Bootstrapping without worrying about multithreading".

• Set up VPEs and TCs.

Once you reach the point where you’re running software which wants to exploit multithreading, you need to dis-
cover what resources the CPU has, and to set them up. That’s described in Section 4.2, "Configuring your choice
of VPEs and TCs".

Special care should be taken when you’re initializing a VPE which is to run non-MT-aware "legacy" software -
perhaps a whole legacy operating system: notes in Section 4.2.1, "Setting up a VPE for legacy software"

If you are running co-operative software on two VPEs and are able to make minor changes to the source code, it
will usually be more efficient to share the TLB entries (the "legacy-ready" approach is really a hard-wired parti-
tion of the entries): see Section 4.2.2, "Sharing and not sharing the TLB".

• Thread initialization for explicit multi-threading, see Section 4.3, "Setting up a TC to run a thread".

4.1 Bootstrapping without worrying about multithreading

It’s usually going to make sense to deal with the complexities of multi-threading only at the point in the system where
you start to use the facilities. For many systems that means that initial bootstrap software (perhaps a boot monitor or
reset-time diagnostic) will be better off ignoring multithreading.

Fortunately that’s straightforward. A MIPS MT CPU comes out of reset with just TC #0 running, affiliated to VPE
#0, and looking single-threaded. Moreover, the VPEConf0[MVP] bit is set, so the bootstrap software is all-powerful
and can do whatever is required to set up the right VPEs and threads for the system.

Now bootstrap your computer. If the software needs to know it, it can read its own TC and VPE number from TCBind.

As always, bootstrap software is responsible for initializing CP0 registers; a register may only be skipped if you are
certain that random contents in it will not disrupt your software.
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4.2 Configuring your choice of VPEs and TCs

When you arrive at that software which wants to start an extra VPE or TC, you first need to discover what resources
your CPU has. The pre-multithreading Config and Config1-3 registers used to tell you everything; but in a MT CPU,
those registers reflect just one VPE’s resources, which in turn depend on what has been configured through
MVPControl and VPEConf0-1 (details in Figure 2-5 and Figure 2-6 and the notes to them) In fact, since in the 34K
core initialization software has a fair amount of control over what resources are allocated to each VPE, some fields in
the previously read-only Config registers are writable. However, that’s only done where necessary: for example, since
all VPEs share the caches, all VPEs can and do use read-only cache information from Config1-2.)

The total CPU resources are enumerated in MVPConf0-1, which you can see in detail in Figure 2-4 .

Getting a second VPE/TC into use

Suppose you have some software loaded into memory, but you want to start running it with TC #1 bound to VPE #1.
Currently both the per-VPE and per-TC registers and other resources are in their post-reset state: the critical ones
need software initialization before they can start.

Only a thread with VPEConf0[MVP] set can do this - fortunately VPE #0 will come out of reset with MVP set (if you
already cleared it, you’ve resigned. Reset the CPU and try again!). Then set MVPControl[VPC].

Set VPEControl[TargTC] to 1, the other TC’s number, so you can write the other TCs registers with mttr.

You certainly don’t want the other VPE running while you do this sort of thing, and you should clear your
VPEControl[EVP] bit while you’re working. You should probably use the dvpe/mtc0 instructions as a "bracket",
rather than manipulating the EVP bit directly. So your overall flow should be like this:

  dvp t0
  ehb # execution hazard barrier, make sure dvp takes effect
  ...
  set MVPControl[VPC]
  (initialise VPE #1 and TC #1)
  ...
  mtc0 t0, VPEControl  # undo the dvp

OK, so now let’s look at how you "initialize VPE #1 and TC #1".

From now on mttr will operate on the TC of your choice. You’ll probably want to do quite a lot of set-up of both
per-TC and per-VPE fields

So for TC#1:

• Set TCHalt. In fact TC#1 can’t run anything yet, because you’re still under dvpe control - but the MT specifica-
tion allows CPUs to treat the “halted” state specially. Don’t omit this.

• TC #1’s VPE affiliation may not be set as you wish, so set TCBind[CurVPE] to 1 (the other VPE’s number)

• A word of warning. This section lists all the “important” fields. When any MIPS CPU is powered up, only a
rather small set of CP0 register fields are initialized. But when a MIPS MT CPU is powered up, only fields for
VPE #0 and TC #0 are initialized at all. Your new VPE may have random garbage in any writable CP0 field. So
if yours may be the first use of that VPE from power-on, iterate over all the CP0 registers setting all writable
fields to “safe” values.
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• Set TCStatus. TCStatus[A]:will have to be set to 1 so the TC can run (this bit is the “allocated” bit for fork, and
is required when setting up a thread manually.) All other bits can be zero, at least to start with - once you get
something working, though, go back to the detailed description in for any other fields in Section 2.9.4,
"TCStatus" on page 35.

• Set TCRestart to the program location where you want your new thread to start.

Now let’s look at VPE#1’s registers:.

• Set VPEControl zero, and set VPEConf0 to leave VPEConf0[XTC] = 1 (it should match your affiliated TC number,
and must do so if you want to start the software “single-threaded”), VPEConf0[MVP] = 0, VPEConf0[VPA] = 1.
For full details consult Figure 2-1 and Figure 2-6 and their notes.

• Set VPE #1/TC #1’s Status register: If your intention is to have VPE #1’s software mimic "coming out of reset"
you might want to set its Status[EXL] set 1, so it starts in exception mode. Think about Status[BEV] - if set and
your new thread takes an exception (which quite often happens with brand new code, due to one slip or another),
then with BEV set it will use the ROM exception vectors, which are always shared with VPE #0 - and might not
be what you wanted. On the other hand, if you do clear Status[BEV], make sure you’ve set up code to catch any
exceptions delivered at the non-ROM address.You might also set EBase to give VPE #1 different exception entry
points from VPE #0 (unless you really want to share them).

• Set VPE #1’s VPEConf1 register. VPEConf1[NCP2, NCP1, NCX] determine whether your new VPE will be able
to use coprocessors 2 and 1 (CP1 is the floating point unit) and the UDI instruction set, respectively. If the co-
processor has only one bank of registers, you may well want to deny use of the co-processor to all but one of the
VPEs.

At the end of our sequence you re-enable multithreading (by restoring the old value of VPEControl). Your last step is
to use mttr to write TC #1’s TCHalt to zero. Now TC#1 should start up and start running your code.

4.2.1 Setting up a VPE for legacy software

In general you can support only one piece of legacy software on a 34K family core. The VPEs see the same basic
MIPS architecture memory map, and a few things are commonly shared - not least the exception entry points.

Your legacy software has to be told (by some means, beyond the scope of this manual) not to use all the physical
memory in the system. Most likely the new MT-aware software will also need to use some virtual memory in the
kseg0/kseg1 regions, too.

The "legacy" VPE needs to be carefully set up to fool the old software into seeing and using a congenial MIPS32
CPU. That means:

1. Set up this VPE with just one TC;

2. You’ll initialize all the relevant new MIPS MT registers and resources to keep the legacy software happy for its
lifetime. Consult the full list of registers in Section 2.9, "Multithreading ASE - CP0 (privileged) registers".

4.2.2 Sharing and not sharing the TLB

It’s not really visible to software whether there is really more than one TLB in any 34K core, but you can software
configure it so that you get either:
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• Hard partition: each VPE appears to have its own TLB fully compatible with the MIPS32 architecture (the sizes
of the VPE’s TLBs are as set when the SoC was built - so while this will often be half-size each, it may not be);
OR

• Shared: the VPEs share all the TLB’s entries (up to a maximum of 64 entries). This is certainly a good choice if
one of the VPEs doesn’t use the TLB at all (which is not unusual in many legacy embedded systems.)

But it is also particularly likely to be a good choice if the VPEs are to run the same software and that software is
under your control; for example, if you’re using them to run a close approximation to a dual-CPU SMP Linux OS
(a VSMP system.)

But to share the TLB you will need to make some modifications to the TLB maintenance code, as described
below.

To partition the TLB just set MVPControl[STLB] zero, and set both VPE’s Config1[MMUSize] fields to the appropriate
size (the split is configurable by your SoC designer).

To share the TLB set MVPControl[STLB] to 1. It will probably be convenient to set Config1[MMUSize] to show the full
array. A change to STLB should be made only by "unmapped" code, and with the TLB empty of valid entries.

You don’t usually need to make any change to the critical TLB refill exception handler, so long as - as is usual - it
relies on random replacement (that is, the update to the TLB is done with a tlbwr instruction.) The TLB CP0 regis-
ters used in a typical TLB miss handler include Context, EntryHi, EntryLo0-1 and PageMask. All are replicated for
each VPE.

The Random register is handled specially. tlbwr will not use a value for Random which coincides with the other
VPE’s value of the manually-set TLB index register Index.

Meanwhile, other kernel software may be doing software-driven updates to the TLB (mostly that means removing
entries). The TLB maintenance software will need to run single-threaded, at least in part. There are three possible
sources of unwanted concurrency, and software has to attend to two of them:

1. The other VPE may itself be performing some TLB maintenance. This can be fixed with a one-thread-at-a-time
software semaphore, just like the ones you use in an SMP OS.

2. Another TC belonging to the same VPE may get a TLB-related exception. This can be fixed by bracketing criti-
cal parts of the TLB maintenance routine with a dmt/mtc0 pair, disabling all TC-level parallelism while the
operation is completed.

3. A TC belonging to the other VPE may get a TLB-related exception. But the hardware makes this OK. The only
resources the two VPEs share are the TLB entries itself, and the only entry the other VPE will access is the one
used by tlbwr as indexed by the Random register. The hardware will ensure that the Random value used by the
other VPE will be different from the Index value you’re using for your maintenance routine. So no software fix is
needed.

For efficient use of TLB entries, maintenance software should return Index to an unused value (which represents no
entry) as soon as it has finished - otherwise you’re blocking Random from selecting some particular TLB slot. The
recommended value is 0x8000.0000; the top bit of Index is writable on MIPS MT CPUs for this purpose.

There’s another more subtle change. The TLB is used early in the pipeline to translate instruction addresses. A TLB-
related exception (“TLB Invalid” for example) detected at this stage is not taken until and unless the instructions are
scheduled into the main pipeline. By that time many instructions from other threads may have gone past, and perhaps
one of them may have done a refill which dislodged the invalid TLB entry. So the TLB invalid exception handler
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might find there’s no translation entry in the TLB at all: your best bet, in that case, is probably to just return from the
exception without doing anything, which will lead to a TLB miss exception and all should get fixed up.

4.3 Setting up a TC to run a thread

The easiest way to set a previously-unoccupied TC running a thread is to use the fork instruction.

To prepare to use fork you need to make sure there is at least one TC with the TCStatus[DA] bit set to 1 (which indi-
cates it’s available for fork), the bit TCStatus[A] zero (i.e. the TC is not already in use), and TCHalt zero.

However, there’s nothing to prevent you from setting up a TC manually; just set the thread restart address TCRestart
and set TCStatus[A]. You should almost always set TCHalt before doing manual adjustments on a TC, and clear it
when you’ve finished. If the TC started to run (perhaps an interrupt routine) while being worked on it would be likely
to lead to confusion.

4.4 TCs recycled as Shadow registers

The MIPS32 architecture permits CPUs to be configured such that a particular interrupt handler (or in some cases all
exception handlers) should be invoked with a complete alternate set of general-purpose registers: a Shadow register
set. That allows you to write a very low-overhead handler, because you don’t have to save the interrupted thread’s reg-
isters.

There are some applications where explicit multithreading will fix your problem better than shadow registers. But
there are other cases where you really want shadow registers rather than multiple TCs, and the 34K core gives you the
choice - you can close down a TC for thread business, and make its registers available for shadow set use. See Section
7.3.1, "Recycling multi-threading CPU’s TCs as shadow sets".
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The MIPS32® DSP ASE

The MIPS DSP ASE is provided to accelerate a large range of DSP algorithms. You can get most programming infor-
mation from this chapter. There’s more detail in the formal DSP ASE specification [MIPSDSP], but expect to read
through lots of material aimed at hardware implementors. You may also find [DSPWP] useful for tips and examples
of converting DSP algorithms for the DSP ASE.

Different target applications generally need different data size and precision:

• 32-bit data: audio (non-hand-held) decoding/encoding - a wide range of "hi-fi" standards for consumer audio or
television sound.

Raw audio data (as found on CD) is 16-bit; but if you do your processing in 16 bits you lose precision beyond
what is acceptable for hi-fi.

• 16-bit data: digital voice for telephony. International telephony code/decode standards include G.723.1
(8Ksample/s, 5-6Kbit/s data rate, 37ms delay), G.729 (8Kbit/s, 15ms delay) and G.726 (16-40Kbit/s, computa-
tionally simpler and higher quality, good for carrying analogue modem tones). Application-specific filters are
used for echo cancellation, noise cancellation, and channel equalization.

Also used for soft modems and much general "DSP" work (filters, correlation, convolution); lo-fi devices use 16
bits for audio.

• 8-bit data: processing of printer images, JPEG (still) images and video data.

5.1 Features provided by the MIPS® DSP ASE

Those target applications can benefit from unconventional architecture features because they rely on:

• Fixed-point fractional data types: It is not yet economical (in terms of either chip size or power budget) to use
floating point calculations in these contexts. DSP applications use fixed-point fractions. Such a fraction is just a
signed integer, but understood to represent that integer divided by some power of two. A 32-bit fractional format

where the implicit divisor is 216 (65536) would be referred to as a Q15.16 format; that’s because there are 16 bits
devoted to fractional precision and 15 bits to the whole number range (the highest bit does duty as a sign bit and
isn’t counted).

With this notation Q31.0 is a conventional signed integer, and Q0.31 is a fraction representing numbers between
-1 and 1 (well, nearly 1). It turns out that Q0.31 is the most popular 32-bit format for DSP applications, since it
won’t overflow when multiplied (except in the corner case where -1×-1 leads to the just-too-large value 1). Q0.31
is often abbreviated to Q31.

The DSP ASE provides support for Q31 and Q15 (signed 16-bit) fractions.

• Saturating arithmetic: It’s not practicable to build in overflow checks to DSP algorithms - they need to be too
fast. Clever algorithms may be built to be overflow-proof; but not all can be. Often the least worst thing to do
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when a calculation overflows is to make the result the most positive or most negative representable value. Arith-
metic which does that is called saturating - and quite a lot of operations in the DSP ASE saturate (in many cases
there are saturating and non-saturating versions of what is otherwise the same instruction).

• Multiplying fractions: if you multiply two Q31 fractions by re-using a full-precision integer multiplier, then
you’ll get a 64-bit result which consists of a Q62 result with (in the very highest bit) a second copy of the sign bit.
This is a bit peculiar, so it’s more useful if you always do a left-shift-by-1 on this value, producing a Q63 format
(a more natural way to use 64 bits). Q15 multiplies which generate a Q31 value have to do the shift-left too.
That’s what all the mulq... instructions do.

• Rounding: some fractional operations implicitly discard less significant bits. But you get a better approximation
if you bump the truncated result by one when the discarded bits represent more than a half of the value of a 1 in
the new LS position. That’s what we mean by rounding in this chapter.

• Multiply-accumulate sequences with choice of four accumulators: (with fixed-point types, sometimes saturating).

The 34K already has quite a slick integer multiply-accumulate operation, but it’s not so efficient when used for
fractional and saturating operations.

The sequences are made more usable by having four 64-bit result/accumulator registers - (the old MIPS multiply
divide unit has just one, accessible as the hi/lo registers). The new ac0 is the old hi/lo, for backward compatibility.

• Benefit from "SIMD" operations.: Many DSP calculations are a good match for "Single Instruction Multiple
Data" or vector operations, where the same arithmetic operation is applied in parallel to several sets of operands.

In the MIPS DSP ASE, some operations are SIMD type - two 16-bit operations or four 8-bit operations are car-
ried out in parallel on operands packed into a single 32-bit general-purpose register. Instructions operating on
vectors can be recognized because the name includes.ph (paired-half, usually signed, often fractional) or.qb
(quad-byte, always unsigned, only occasionally fractional).

The DSP ASE hardware involves an extensive re-work of the normal integer multiply/divide unit. As mentioned
above it has four 64-bit accumulators (not just one) and a new control register, described immediately below.

5.2 The DSP ASE control register

This is a part of the user-mode programming model for the DSP ASE, and is a 32-bit value read and written with the
rddsp/wrdsp instructions. It holds state information for some DSP sequences.

In Figure 5-1:

ccond: condition bits set by compare instructions (there have to be four to report on compares between vector types).
"Compare" operations on scalars or vectors of length two only touch the lower-numbered bits. DSPControl bits 31:28
are used for more ccond bits in 64-bit machines.

Figure 5-1 Fields in the DSPControl Register
31 28 27 24 23 16 15 14 13 12 7 6 5 0

0 ccond ouflag 0 EFI c scount 0 pos
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ouflag: one of these bits may be set when a result overflows (whether or not the result is saturated depends on the
instruction - the flag is set in either case). The "ou" stands for "overflow/underflow" - "underflow" is used here for a
value which is negative but with excessive absolute value.

Any overflowed/underflowed result produced by any DSP ASE instruction sets a ouflag bit, except for addsc/
addwc and shilo/shilov.

The 6 bits are set according to the destination of the operation which overflowed, and the kind of operation it
was:

EFI: set by any of the accumulator-to-register bitfield extract instructions extp, extpv, extpdp, or extpdp. It’s set
to 1 if and only if the instruction finds there are insufficient bits to extract. That is, if DSPControl[pos] - which is
supposed to mark the highest-numbered bit of the field we’re extracting - is less than the size value specified by the
instruction.

c: Carry bit for 32-bit add/carry instructions addsc and addwc.

scount, pos: Fields for use by "variable" bitfield insert and extract instructions, such as insv (the normal MIPS32
ins/ext instructions have the field size and position hard-coded in the instruction).

scount specifies the size of the bit field to be inserted, while pos specifies the insert position.

Caution: in all inserts (following the lead of the standard MIPS32 insert/extract instructions) pos is set to the
lowest bit number in the field. But in the DSP ASE extract-from-accumulator instructions (extp, extpv, ext-
pdp and extpdpv), pos identifies the highest-numbered bit in the field.

The latter two ("dp") instructions post-decrement pos (by the bitfield length size), to help software which is
unpacking a series of bitfields from a dense data structure.

The mthlip instruction will increment the pos value by 32 after copying the value of lo to hi.

5.2.1 DSP accumulators

Whereas a standard MIPS32 architecture CPU has just one 64-bit multiply unit accumulator (accessible as hi/lo), the
DSP ASE provides three 64-bit accumulators. Instructions accessing the extra accumulators specify a 2-bit field as 0-
3 (0 selects the original accumulator).

5.3 Software detection of the DSP ASE

You can find out if your core supports the DSP ASE by testing the Config3[DDSP] bit (see Table C-6).

Then you need to enable the instruction set by setting Status[MX] (or its alternate view TCStatus[TMX]) to 1, for any
TC which will execute code in the MIPS DSP ASE.

Bit No Overflowed destination/instruction
16-19 Destination register is a multiply unit accumulator:

separate bits are respectively for accumulators 0-3.
20 Add/subtract.
21 Multiplication of some kind.
22 Shift left or conversion to smaller type
23 Accumulator shift-then-extract
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5.4 DSP instructions

The DSP instruction set is nothing like the regular and orthogonal MIPS32 instruction set. It’s a collection of special-
case instructions, in many cases aimed at the known hot-spots of important algorithms.

We’ll summarize the instructions under headings, but then list all of them in Section 5.2, "DSP instructions in
alphabetical order", an alphabetically-ordered list which provides a terse but usually-sufficient description of what
each instruction does.

5.4.1 Hints in instruction names

An instruction’s name may have some suffixes which are often informative:

q: generally means it treats operands as fractions (which isn’t important for adds and subtracts, but is important for
multiplications and convert operations);

_s: usually means the full-precision result is saturated to the size of the destination; _sa is used for instructions which
saturate intermediate results before accumulating; and r: denotes rounding (see above);

.w,.ph,.qb: suggest the operation is dealing with 32-bit, paired-half or quad-byte values respectively. Where there
are two of these (as in macq_s.w.phl) the first one suggests the type of the result, and the second the type of the
operand(s).

v: (in a shift instruction) suggests that the shift amount is defined in a register, rather than being encoded in a field of
the instruction.

To help you get your arms around this collection of instructions we’ll group them by likely usage - guided by the type
of the result performed, with an eye to the application. The multiplication instructions are more tricky: most of them
have multiple uses. We’ve sorted them by the most obvious use (likely also the most common). The classification
we’ve chosen divides them into:

• Arithmetic - 64-bit

• Arithmetic - saturating and/or SIMD Types

• Bit-shifts - saturating and/or SIMD types

• Comparison and "conditional-move" operations on SIMD types - includes pick instructions.

• Conversions to and from SIMD types

• Multiplication - SIMD types with result in GP register

• Multiply Q15s from paired-half and accumulate

• Load with register+register address

• DSPControl register access

• Accumulator access instructions

• Dot products and building blocks for complex multiplication - includes full-word (Q31) multiply-accumulate

• Other DSP ASE instructions  - everything else...
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5.4.2 Arithmetic - 64-bit

addsc/addwc generate and use a carry bit, for efficient 64-bit add.

5.4.3 Arithmetic - saturating and/or SIMD Types

• 32-bit signed saturating arithmetic: addq_s.w, subq_s.w and absq_s.w.

• Paired-half and quad-byte SIMD arithmetic: perform the same operation simultaneously on both 16-bit halves or
all four 8-bit bytes of a 32-bit register. The "q" in the instruction mnemonic for the PH operations here is cos-
metic: Q15 and signed 16-bit integer add/subtract operations are bit-identical - Q15 only behaves very differently
when converted or multiplied.

The paired half operations are: addq.ph/addq_s.ph, subq.ph/subq_s.ph and absq_s.ph.

The quad-byte operations (all unsigned) are: addu.qb/addu_s.qb, subu.qb/subu_s.qb.

• Sum of quad-byte vector: raddu.w.qb does an unsigned sum of the four bytes found in a register, zero extends
the result and delivers it as a 32-bit value.

5.4.4 Bit-shifts - saturating and/or SIMD types

All shifts can either have a shift amount encoded in the instruction, or - indicated by a trailing "v" in the instruction
name - provided as a register operand. PH and 32-bit shifts have optional forms which saturate the result.

• 32-bit signed shifts: include a saturating version of shift left, shll_s.w; and an auto-rounded shift right (just
the "arithmetic", sign-propagating form): shra_r.w. Recall from above that rounding can be imagined as pre-
adding a half to the least significant surviving bit.

• Paired-half and quad-byte SIMD shifts: shll.ph/shllv.ph/shll_s.ph/shllv_s are as above. For PH
only there’s a shift-right-arithmetic instruction ("arithmetic" means it propagates the sign bit downward)
shra.ph, which has a variant which rounds the result shra_r.ph.

The quad-byte shifts are unsigned and don’t round or saturate: shll.qb/shllv.qb, shrl.qb/shrlv.qb.

5.4.5 Comparison and "conditional-move" operations on SIMD types

The "cmp" operations simultaneously compare and set flags for two or four values packed in a vector (with equality,
less-than and less-than-or-equal tests). For PH that’s cmp.eq.ph, cmp.lt.ph and cmp.le.ph. The result is left
in the two LS bits of DSPControl[ccond].

For quad-byte values cmpu.eq.qb, cmpu.lt.qb and cmpu.le.qb simultaneously compare and set flags for
four bytes in DSPControl[ccond] - the flag relating to the bytes found in the low-order bits of the source register is in
the lowest-numbered bit (and so on). There’s an alternative set of instructions cmpgu.eq.qb, cmpgu.lt.qb and
cmpgu.le.qb which leave the 4-bit result in a specified general-purpose register.

pick.ph uses the two LS bits of DSPControl[ccond] (usually the outcome of a paired-half compare instruction, see
above) to determine whether corresponding halves of the result should come from the first or second source register.
Among other things, this can implement a paired-half conditional move. You can reverse the order of your condi-
tional inputs to do a move dependent on the complementary condition, too.

pick.qb does the same for QB types, this time using four bits of DSPControl[ccond].
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5.4.6 Conversions to and from SIMD types

Conversion operations from larger to smaller fractional types have names which start "precrq..." for "precision
reduction, fractional". Conversion operations from smaller to larger have names which start "prece..." for "preci-
sion expansion".

• Form vector from high/low parts of two other paired-half values: packrl.ph makes a paired-half vector from
two half vectors, swapping the position of each sub-vector. It can be used to acquire a properly formed sub-vector
from a non-aligned data stream.

• One Q15 from a paired-half to a Q31 value: preceq.w.phl/preceq.w.phr select respectively the "left"
(high bit numbered) or "right" (low bit numbered) Q15 value from a paired-half register, and load it into the
result register as a Q31 (that is, it’s put in the high 16 bits and the low 15 bits are zeroed).

• Two bytes from a quad-byte to paired-half: precequ.ph.qbl/precequ.ph.qbr picks two bytes from
either the "left" (high bit numbered) or "right" (low bit numbered) halves of a quad-byte value, and unpacks to a
pair of Q15 fractions.

precequ.ph.qbla does the same, except that it picks two "alternate" bytes from bits 31-24 and 15-8, while
precequ.ph.qbra picks bytes from bits 23-16 and 7-0.

Similar instructions without the q - preceu.ph.qbl, preceu.ph.qbr, preceu.ph.qbla" and pre-
ceu.ph.qbra - work on the same register fields, but treat the quantities as integers, so the 16-bit results get
their low bits set.

• 2×Q31 to a paired-half: both operands and result are assumed to be signed fractions, so precrq.ph.w just
takes the high halves of the two source operands and packs them into a paired-half; precrq_rs.ph.w rounds
and saturates the results to Q15.

• 2×paired-half to quad-byte: you need two source registers to provide four paired-half values, of course. This is a
fractional operation, so it’s the low bits of the 16-bit fractions which are discarded.

precrq.qb.ph treats the paired-half operands as unsigned fractions, retaining just the 8 high bits of each 16-
bit component.

precrqu_s.qb.ph treats the paired-half operands as Q15 signed fractions and both rounds and saturates the
result (in particular, a negative Q15 fraction produces a zero byte, since zero is the lowest representable quantity).

• Replicate immediate or register value to paired-half: in repl.ph the value to be replicated is a 10-bit signed
immediate value (that’s in the range -512 ≤ x ≤ 511) which is sign-extended to 16 bits, whereas in replv.ph
the value - assumed to be already a Q15 value - is in a register.

• Replicate single value to quad-byte: there’s both a register-to-register form replv.qb and an immediate form
repl.qb.

5.4.7 Multiplication - SIMD types with result in GP register

When a multiply’s destination is a general-purpose register, the operation is still done in the multiply unit, and you
should expect it to overwrite the hi/lo registers (otherwise known as ac0.)

• 8-bit×16-bit 2-way SIMD multiplication: muleu_s.ph.qbl/muleu_s.ph.qbr picks the "left" (high bit
numbered) or "right" (low bit numbered) pair of byte values from one source register and a pair of 16-bit values
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from the other. Two unsigned integer multiplications are done at once, the results unsigned-saturated and deliv-
ered to the two 16-bit halves of the destination.

The asymmetric use of the source operands is not a bit like a Q15 operation. But 8×16 multiplies are heavily used
in imaging and video processing (JPEG image encode/decode, for example).

• Paired-half SIMD multiplication: mulq_rs.ph multiplies two Q15s at once and delivers it to a paired-half
value i n a general-purpose register, with rounding and saturation.

• Multiply half-PH operands to a Q31 result: muleq_s.w.phl/muleq_s.w.phr pick the "left"/"right" Q15
value respectively from each operand, multiply and store a Q31 value.

"Precision-doubling" multiplications like this can overflow, but only in the extreme case where you multiply -1×-
1, and can’t represent 1 exactly.

5.4.8 Multiply Q15s from paired-half and accumulate

maq_s.w.phl/maq_s.w.phr picks either the left/high or right/low Q15 value from each operand, multiplies
them to Q31 and accumulates to a Q32.31 result. The multiply is saturated only when it’s -1×-1.

maq_sa.w.phl/maq_sa.w.phr differ in that the final result is saturated to a Q31 value held in the low half of
the accumulator (required by some ITU voice encoding standards).

5.4.9 Load with register + register address

Previously available only for floating point data1: lwx for 32-bit loads, lhx for 16-bit loads (sign-extended) and
lbux for 8-bit loads, zero-extended.

5.4.10 DSPControl register access

wrdsp rs,mask sets DSPControl fields, but only those fields which are enabled by a 1 bit in the 6-bit mask.

rddsp reads DSPControl into a GPR; but again it takes a mask field. Bitfields in the GPR corresponding to
DSPControl fields which are not enabled will be set all-zero.

The mask bits tie up with fields like this:

1. Well, an integer instruction is also included in the MIPS SmartMIPS™ ASE.

Table 5.1 Mask bits for instructions accessing the DSPControl register
Mask Bit DSPControl field

0 pos

1 scount

2 c

3 ouflag

4 ccond

5 EFI
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5.4.11 Accumulator access instructions

• Historical instructions which now access new accumulators: the familiar mfhi/mflo/mthi/mtlo instructions
now take an optional extra accumulator-number parameter.

• Shift and move to general register: extr.w/extr_r.w/extr_rs.w gets a 32-bit field from an accumulator
(starting at bit 0 up to 31) and puts the value in a general purpose register. At your option you can specify round-
ing and signed 32-bit saturation.

extrv.w/extrv_r.w/extrv_rs.w do the same but specify the field’s starting bit number with a register.

• Extract bitfield from accumulator: extp/extpv takes a bitfield (up to 32 bits) from an accumulator and moves
it to a GPR. The length of the field can be an immediate value or from a register. The position of the field is deter-
mined by DSPControl[pos], which holds the bit number of the most significant bit.

extpdp/extpdpv do the same, but also auto-decrement DSPControl[pos] to the bit-number just below the field
you extracted.

• Accumulator rearrangement: shilo/shilov has a signed shift value between -32 and +31, where positive
numbers shift right, and negative ones shift left. The "v" version, as usual, takes the shift value from a register.
The right shift is a "logical" type so the result is zero extended.

• Fill accumulator pushing low half to high: mthlip moves the low half of the accumulator to the high half, then
writes the GPR value in the low half. Generally used to bring 32 more bits from a bitstream into the accumulator
for parsing by the various ext... instructions.

5.4.12 Dot products and building blocks for complex multiplication

In 2-dimensional vector math (or in any doubled-up step of a multiply-accumulate sequence which has been opti-
mized for 2-way SIMD) you’re often interested in the dot product of two vectors:

v[0]*w[0] + v[1]*w[1]

In many cases you take the dot product of a series of vectors and add it up, too.

Some algorithms use complex numbers, represented by 2D vectors. Complex numbers use i to stand for "the square
root of -1", and a vector [a,b] is interpreted as a+ib (mathematicians leave out the multiply sign and use single-
letter variables, habits which would not be appreciated in C programming!) Complex multiplication just follows the
rules of multiplying out sums, remembering that i*i=-1, so:

(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)

Or in vector format:

[a, b] * [c, d] = [a*c - b*d, a*d + b*c]

The first element of the result (the "real component") is like a dot product but with a subtraction, and the second (the
"imaginary component") is like a dot product but with the vectors crossed.
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• Q15 dot product from paired-half, and accumulate: dpaq_s.w.ph does a SIMD multiply of the Q15 halves of
the operands, then adds the results and saturates to form a Q31 fraction, which is accumulated into a Q32.31 frac-
tion in the accumulator.

dpsq_s.w.ph does the same but subtracts the dot product from the accumulator.

For the imaginary component of a complex multiply, first swap the Q15 numbers in one of the register operands
with a rot (bit-rotate) instruction.

For the real component of a complex Q15 multiply, you have the difference-of-products instruction
mulsaq_s.w.ph, which parallel-multiplies both Q15 halves of the PH operands, then computes the difference
of the two results and leaves it in an accumulator in Q32.31 format (beware: this does not accumulate the result).

• 16-bit integer dot-product from paired-half, and accumulate: dpau.h.qbl/dpau.h.qbr picks two QB val-
ues from each source register, parallel-multiplies the corresponding pairs to integer 16-bit values, adds them
together and then adds the whole lot into an accumulator. dpsu.h.qbl/dpsu.h.qbr do the same sum-of-
products, but the result is then subtracted from the accumulator. In both cases, note this is integer (not fractional)
arithmetic.

• Q31 saturated multiply-accumulate: is the nearest thing you can get to a dot-product for Q31 values.
dpaq_sa.l.w does a Q31 multiplication and saturates to produce a Q63 result, which is added to the accumu-
lator and saturated again. dpsq_sa.l.w does the same, except that the multiply result is subtracted from the
accumulator (again, useful for the real component of a complex number).

5.4.13 Other DSP ASE instructions

• Branch on DSPControl field: bposge32 branches if DSPControl[pos]≥32.

Typically the test is for "is it time to load another 32 bits of data from the bitstream yet?".

• Circular buffer index update: modsub takes an operand which packs both a maximum index value and an index
step, and uses it to decrement a "buffer index" by the step value, but arranging to step from zero to the provided
maximum.

• Bitfield insert with variable size/position: insv is a bit-insert instruction. It acts like the MIPS32 standard
instruction ins except that the position and size of the inserted field are specified not as immediates inside the
instruction, but are obtained from DSPControl[pos] (which should be set to the lowest numbered bit of the field
you want) and DSPControl[scount] respectively.

• Bit-order reversal: bitrev reverses the bits in the low 16 bits of the register. The high half of the destination is
zero.

The bit-reverse operation is a computationally crucial step in buffer management for FFT algorithms, and a 16-
bit operation supports up to a 32K-point FFT, which is much more than enough. A full 32-bit reversal would be
expensive and slow.
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5.5 Macros and typedefs for DSP instructions

It’s useful to be able to use fragments of C code to describe what some instructions do. To do that, we need to be able

to refer to fractional types, saturation and vectors. Here are the definitions we’re using1:

typedef long long int64;
typedef int int32;

/* accumulator type */
typedef signed long long q32_31;

typedef signed int q31;

#define MAX31 0x7FFFFFFF
#define MIN31 -(1<<31)
#define SAT31(x) (x > MAX31 ? MAX31: x < MIN31 ? MIN31: x)

typedef signed short q15;
#define MAX15 0x7FFF
#define MIN15 -(1<<15)
#define SAT15(x) (x > MAX15 ? MAX15: x < MIN15 ? MIN15: x)

typedef unsigned char u8;
#define MAXUBYTE 255
#define SATUBYTE(x) (x > MAXUBYTE ? MAXUBYTE: x < 0 ? 0: x)

/* fields in the vector types are specified by relative bit
   position, but C definitions are in memory order, so these
   definitions need to be endianness-dependent */

#ifdef BIG_ENDIAN
typedef struct{
  q15 h1, h0;
} ph;

typedef struct{
  u8 b3, b2, b1, b0;
} qb;
#else
typedef struct{
  q15 h0, h1;
} ph;

typedef struct{
  u8 b0, b1, b2, b3;
} qb;
#endif

1. This page needs more work, and I hope it will be improved in a future version of the manual.
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5.6 Almost Alphabetically-ordered table of DSP ASE instructions

Table 5.2 DSP instructions in alphabetical order
Instruction Description

absq_s.w rd,rt Q31/signed integer absolute value with saturation
addq.ph rd,rs,rt 2×SIMD Q15 addition, without and with saturation of the result
addq_s.ph rd,rs,rt

addq_s.w rd,rs,rt Q31/signed integer addition with saturation
addsc rd,rs,rt Add setting carry, then add with carry. The carry bit is kept in DSPControl[c]. So to add

the 64-bit values in registers yhi/ylo, zhi/zlo to produce a 64-bit value in xhi/xlo, just do:
addsc xlo, ylo, zlo; addwc xhi, yhi, zhi

addwc rd,rs,rt

addu.qb rd,rs,rt 4×SIMD QBYTE addition, without and with SATUBYTE saturation.
addu_s.qb rd,rs,rt

bitrev rd,rt Delivers the bit-reversal of the low 16 bits of the input (result has high half zero).
bposge32 offset Branch if DSPControl[pos]>=32. Like most branch instruction, it has a 16-bit "PC-rel-

ative" target encoding.
cmp.eq.ph rs,rt Signed compare of both halves of two paired-half ("PH") values. Results are written into

DSPControl[ccond1-0] for high and low halves respectively (1 for true, 0 for false).
A signed compare works for both Q15 or signed 16-bit values.

cmp.le.ph rs,rt

cmp.lt.ph rs,rt

cmpgu.eq.qb rd,rs,rt Unsigned simultaneous compare of all four bytes in quad-byte values. The four result
bits are written into the four LS bits of general register rd.cmpgu.le.qb rd,rs,rt

cmpgu.lt.qb rd,rs,rt

cmpu.eq.qb rs,rt Unsigned simultaneous compare of all four bytes in quad-byte values. The four result
bits are written into register DSPControl[cond3-0].cmpu.le.qb rs,rt

cmpu.lt.qb rs,rt

dpaq_s.w.ph ac,rs,rt "Dot product and accumulate", with Q31 saturation of each multiply result:
ph rs,rt; ac += SAT31(rs.h0*rt.h0 + rs.h1*rt.h1);
The accumulator is effectively used as a Q32.31 fraction.

dpaq_sa.l.w ac,rs,rt Q31 saturated multiply-accumulate
dpau.h.qbl qb rs, rt;

ac += rs.b3*rt.b3 + rs.b2*rt.b2;
Dot-product and accumulate of quad-byte values ("l" for left, because these are the
higher bit-numbered bytes in the 32-bit register).
Not a fractional computation, just unsigned 8-bit integers.

dpau.h.qbr Then for the lower bit-numbered bytes:
qb rs, rt;
ac += rs.b1*rt.b1 + rs.b0*rt.b0;

dpsq_s.w.ph ac,rs,rt Paired-half fractional "dot product and subtract from accumulator"
ph rs, rt;
q32_31 ac;
ac -= SAT31(rs.h1*rt.h1 + rs.h0*rt.h0);

dpsq_sa.l.w ac,rs,rt Q31 saturated fractional-multiply, then subtract from accumulator:
q31 rs, rt; q32_31 ac;
ac -= SAT31(rs*rt);

QB format dot-product and subtract from accumulator. This is an integer (not fractional)
multiplication and comes in "left" and "right" (higher/lower-bit numbered pair) versions:

dpsu.h.qbl ac,rs,rt qb rs,rt;
ac -= rs.b3*rt.b3 + rs.b2*rt.b2;

dpsu.h.qbr ac,rs,rt qb rs,rt;
ac -= rs.b1*rt.b1 + rs.b0*rt.b0;
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extp rt,ac,size Extract bitfield from an accumulator to register. The length of the field (number of bits)
can be an immediate constant or can be provided by a second source register (in the v
variants).
The field position, though, comes from DSPControl[pos], which marks the highest-
numbered bit of the field (note that the MIPS32 standard bitfield extract instructions
specify the lowest bit number in the field). In the dp variants like extpdp/extpdpv,
DSPControl[pos] is auto-decremented by the length of the field extracted, which is use-
ful when unpacking the accumulator into a series of fields.

extpdp rt,ac,size

extpdpv rt,ac,rs

extpv rt,ac,rs

extr.w rt,ac,shift Extracts a bit field from an accumulator into a general purpose register. The LS bit of the
extracted field can start anywhere from bit zero to 31 of the accumulator:
int64 ac; unsigned int rt;
rt = (ac >> shift) & 0xFFFFFFFF;
At option you can specify rounding (_r names):
int64 ac; unsigned int rt;
rt = ((ac + 1<<(shift-1)) >> shift) & 0xFFFFFFFF;
and signed 32-bit saturation of the result (_s/_rs names).
The extrv... variants specify the shift amount (still limited to 31 positions) with a
register.

extr_r.w rt,ac,shift

extr_rs.w rt,ac,shift

extrv.w rt,ac,rs

extrv_r.w rt,ac,rs

extrv_rs.w rt,ac,rs

extr_s.h rt,ac,shift Obtain a right-shifted value from an accumulator and form a signed 16-bit saturated
result.extrv_s.h rt,ac,rs

insv rt,rs The bitfield insert in the standard MIPS32 instruction set is ins rt,rs,pos,size,
and the position and size must be constants (encoded as immediates in the instruction
itself). This instruction permits the position and size to be calculated by the program,
and then supplied as DSPControl[pos] and DSPControl[scount] respectively.
In this case DSPControl[pos] must be set to the lowest numbered bit in the field to be
inserted: yes, that’s different from the extp... instructions.

lbux rd,index(base) Load operations with register+register address formation. lbux is a load byte and zero
extend, lhx loads half-word and sign-extends, and lwx loads a whole word. The full
address must be naturally aligned for the data type.

lhx rd,index(base)

lwx rd, index(base)

maq_s.w.phl ac,rs,rt Non-SIMD Q15 multiply-accumulate, with operands coming from either the "left"
(higher bit number) or "right" (lower bit number) half of each of the operand registers.
In all versions the Q15 multiplication is saturated to a Q31 results. The "_sa" variants
saturates the add result in the accumulator to a Q31, too.

maq_s.w.phr ac,rs,rt

maq_sa.w.phl ac,rs,rt

maq_sa.w.phr ac,rs,rt

mfhi rd, ac Legacy instruction, which now works on new accumulators (if you provide a second
nonzero argument). Copies high/low half (respectively) of accumulator to rd.mflo rd, ac

modsub rd,rs,rt Circular buffer index update. rt packs both the decrement amount (low 8 bits) and the
highest index (high 24 bits), then this instruction calculates:
rd = (rs == 0) ?   ((unsigned) rt >> 8): rs - (rt & 0xFF);

mthi rs, ac Legacy instruction working on new accumulators. Moves data from rd to the high half of
an accumulator.

mthlip rs, ac Moves the low half of the accumulator to the high half, then writes the GPR value in the
low half.

mtlo rs, ac Legacy instruction working on new accumulators. Moves data from rd to the low half of
an accumulator.

muleq_s.w.phl rd,rs,rt Multiply selected Q15 values from "left"/"right" (higher/lower numbered bits) of rd/rs
to a Q31 result in a general purpose register, Q31-saturating.
Like all multiplies which target general purpose registers, it may well use the multiply
unit and overwrite hi/lo, also known as ac0.

muleq_s.w.phr rd,rs,rt

Table 5.2 DSP instructions in alphabetical order
Instruction Description
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muleu_s.ph.qbl rd,rs,rt A 2×SIMD 16-bit×8-bit multiplication.
muleu_s.ph.qbl does something like:
rd = ((LL_B(rs)*LEFT_H(rt)) << 16) |
     ((LR_B(rs)*RIGHT_H(rt));
Note that the multiplications are unsigned integer multiplications, and each half of the
result is unsigned-16-bit-saturated.
The asymmetric source operands are quite unusual, and note this is not a fractional com-
putation.
muleu_s.ph.qbr is the same but picks the RL and RR (low bit numbered) byte val-
ues from rs.

muleu_s.ph.qbr rd,rs,rt

mulq_rs.ph rd,rs,rt 2×SIMD Q15 multiplication to two Q15 results. Result in general purpose register, hi/lo
or ac0 may be overwritten.

mulsaq_s.w.ph ac,rs,rt ac += (LEFT_H(rs)*LEFT_H(rt)) -
(RIGHT_H(rs)*RIGHT_H(rt));
The multiplications are done to Q31 values, saturated if they overflow (which is only
possible when -1¥-1 makes +1). The accumulator is really a Q32.31 value, so is
unlikely to overflow; no overflow check is done on the accumulation.

packrl.ph rd,rs,rt pack a “right” and “left” half from different registers, ie
rd = (((rs & 0xFFFF) << 16) | (rt >> 16) & 0xFFFF);

pick.ph rd,rs,rt Like a 2-way SIMD conditional move:
ph rd,rs,rt;
rd.l = DSPControl[ccond1] ? rs.l: rt.l;
rd.r = DSPControl[ccond0] ? rs.r: rt.r;

pick.qb rd,rs,rt Kind of a 4-way SIMD conditional move:
qb rd,rs,rt;
rd.ll = DSPControl[ccond3] ? rs.ll: rt.ll;
rd.lr = DSPControl[ccond2] ? rs.lr: rt.lr;
rd.rl = DSPControl[ccond1] ? rs.rl: rt.rl;
rd.rr = DSPControl[ccond0] ? rs.rr: rt.rr;

preceq.w.phl rd,rt Convert a Q15 value (either left/high or right/low half of rt) to a Q31 value in rd.
preceq.w.phr rd,rt

precequ.ph.qbl rd,rt Simultaneously convert two unsigned 8-bit fractions from rt to Q15 and load into the two
halves of rd.
precequ.ph.qbl uses rt.ll/rt.lr; precequ.ph.qbla uses rt.ll/rt.rl; pre-
cequ.ph.qbr uses rt.rl/rt.rr; and precequ.ph.qbra uses rt.lr/rt.rr.

precequ.ph.qbla rd,rt

precequ.ph.qbr rd,rt

precequ.ph.qbra rd,rt

preceu.ph.qbl rd,rt Zero-extend two unsigned byte values from rt to unsigned 16-bit and load into the two
halves of rd.
preceu.ph.qbl uses rt.ll/rt.lr; preceu.ph.qbla uses rt.ll/rt.rl; pre-
ceu.ph.qbr uses rt.rl/rt.rr; and preceu.ph.qbra uses rt.lr/rt.rr.

preceu.ph.qbla rd,rt

preceu.ph.qbr rd,rt

preceu.ph.qbra rd,rt

precrq.ph.w rd,rs,rt precrq.ph.w makes a paired-Q15 value by taking the MS bits of the Q31 values in rs
and rt, like this:
rd = (rs & 0xFFFF0000) | ((rt>>16) & 0xFFFF);
precrq_rs.ph.w is the same, but rounds and Q15-saturates both half-results.

precrq_rs.ph.w rd,rs,rt

precrq.qb.ph rd,rs,rt Form a quad-byte value from two paired-halves. We use the upper 8 bits of each half-
word value, as if we were converting an unsigned 16-bit fraction to an unsigned 8-bit
fraction. In C: rd = (rs & 0xFF000000) | (rs<<8 & 0xFF0000) |
     (rt>>16 & 0xFF00) | (rt>>8 & 0xFF);

precrqu_s.qb.ph Does the same, but each conversion is rounded and saturated to an unsigned byte. Note
in particular that a negative Q15 quantity yields a zero byte, since zero is the smallest
representable value.

precrqu_s.qb.ph rd,rs,rt

raddu.w.qb rd,rs Set rd to the unsigned 32-bit integer sum of the four unsigned bytes in rs.

Table 5.2 DSP instructions in alphabetical order
Instruction Description
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5.7 DSP ASE instruction timing

Most DSP ASE operations are pipelined, and instructions can often be issued at the maximum CPU rate, but getting
results back into the general-purpose register file takes a few clocks. The timings are generally fairly similar to those
for the standard multiply instructions, and are listed - together with delays for the standard instruction set - in Section
9.5.4, "Data dependency delays classified".

rddsp rt,mask Read the contents of the DSPControl register into rt, but zeroing out any fields for
which the appropriate mask bit is zeroed, see Figure 5.1 above.

repl.ph rd,imm Replicate the same signed value into the two halves of a PH value in rd; the value is
either provided as an immediate whose range is limited between -512 and +511
(repl.ph) or from the rt register (replv.ph).

replv.ph rd,rt

repl.qb rd,imm Replicate the same 8-bit value into all four parts of a QB value in rd; the value can come
from an immediate constant, or the rt register of the replv.qb instruction.replv.qb rd,rt

shilo ac,shift Do a right or left shift (use a negative value for a left shift) of a 64-bit accumulator. The
right shift is "logical", bringing in zeroes into the high bits.
shilo takes a constant shift amount, while shilov get the shift amount from rs. The
shift amount may be no more than 31 right or 32 left.

shilov ac,rs

shll.ph rd, rt, sa 2×SIMD (paired-half) shift left. The "v" versions take the shift amount from a register,
and the "_s" versions saturate the result to a signed 16-bit range.shllv.ph rd, rt, rs

shll_s.ph rd, rt, sa

shllv_s.ph rd, rt, rs

shll.qb rd, rt, sa 4×SIMD quad-byte shift left, with shift-amount-in-register and saturating (to an
unsigned 8-bit result) versions.shllv.qb rd, rt, rs

shll_s.w rd, rt, sa Signed 32-bit shift left with saturation, with shift-amount-in-register shllv_s option.
shllv_s.w rd, rt, rs

shra.ph rd, rt, sa 2×SIMD paired-half shift-right arithmetic (“arithmetic” because the vacated high bits of
the value are replaced by copies of the input bit 16, the sign bit) - thus performing a cor-
rect division by a power of two of a signed number.
As usual the shra_v variant has the shift amount specified in a register.
The _r versions round the result first (see the bullet on rounding above).

shra_r.ph rd, rt, sa

shrav.ph rd, rt, rs

shrav_r.ph rd, rt, rs

shra_r.w rd, rt, sa 32-bit signed/arithmetic shift right with rounding, see the bullet on rounding.
shrav_r.w rd, rt, rs

shrl.qb rd, rt, sa 4×SIMD shift right logical ("logical" means that the vacated high bits are filled with
zero, appropriate since the byte quantities in a quad-byte are usually treated as
unsigned.)

shrlv.qb rd, rt, rs

subq.ph rd,rs,rt 2×SIMD subtraction. subq_s.ph saturates its results to a signed 16-bit range.
subq_s.ph rd,rs,rt

subq_s.w rd,rs,rt 32-bit saturating subtraction.
subu.qb rd,rs,rt 4×SIMD quad-byte subtraction. Since quad-bytes are treated as unsigned, the saturating

variant subu_s.qb works to an unsigned byte range.subu_s.qb rd,rs,rt

wrdsp rt,mask Write the DSPControl register with data from rt, but leaving unchanged any fields for
which the appropriate mask bit is zeroed, see Figure 5.1 above.

Table 5.2 DSP instructions in alphabetical order
Instruction Description
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Memory map, caching, reads and writes and translation

In this chapter:

• Section 6.1, "The memory map": basic memory map of the system.

• Section 6.3, "Reads, writes and synchronization"

• Section 6.4, "Caches"

• Section 6.5, "Scratchpad memory/SPRAM": optional on-chip, high-speed memory (particularly useful when
dual-ported to the OCP interface).

• Section 6.6, "The TLB and translation": how translation is done and supporting CP0 registers.

6.1 The memory map

A 34K core system can be configured with either a TLB (virtual memory translation unit) or a fixed memory map-
ping, or even with one VPE using the TLB and one with fixed mapping.

A TLB-equipped VPE sees the memory map described by the [MIPS32] architecture, which will be familiar to any-
one who has used a 32-bit MIPS architecture CPU and is summarized in Figure 6.1. The TLB gives you access to a
full 32-bits physical address on the system interface. More information about the TLB in Section 6.6, "The TLB and
translation".

Table 6.1 Basic MIPS32® architecture memory map
Segment Virtual range What happens to accesses here?

Name
kuseg 0x0000.0000-0x7FFF.FFFF The only region accessible to user-privilege programs.

Mapped by TLB entries.
kseg0 0x8000.0000-0x9FFF.FFFF a fixed-mapping window onto physical addresses

0x0000.0000-0x1FFF.FFFF. Almost invariably cache-
able - but in fact other choices are available, and are
selected by Config[K0], see Section C-4, "Fields in
the Config register".
Accessible only to kernel-privilege programs.

kseg1 0xA000.0000-0xBFFF.FFFF a fixed-mapping window onto the same physical
address range 0x0000.0000-0x1FFF.FFFF as "kseg0" -
but accesses here are uncached.
Accessible only to kernel-privilege programs.

kseg2 0xC000.0000-0xDFFF.FFFF Mapped through TLB, accessible with supervisor or
kernel privilege (hence the alternate name).sseg

kseg3 0xE000.0000-0xFFFF.FFFF Mapped through TLB, accessible only with kernel
privileges.
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6.2 Fixed mapping option

To save chip area for applications not needing a full TLB, threads in one or both VPEs can use a simple fixed map-
ping (“FMT”) memory translator, which plays the same role. You can find out whether a VPE has fixed mappings by
reading the CP0 field Config[MT] (see Figure C-4 and descriptions). With the fixed mapping option, virtual address
ranges are hard-wired to particularly physical address windows, and cacheability options are set through CP0 register
fields as summarized in Table 6.2:

Note that even in fixed-mapping mode, the cache parity error status bit Status[ERL] still has the effect (required by the
MIPS32 architecture) of usurping the normal mapping of "kuseg"; addresses in that range are used unmapped as
physical addresses, and all accesses are uncached, until Status[ERL] is cleared again.

6.3 Reads, writes and synchronization

The MIPS architecture permits implementations a fair amount of freedom as to the order in which loads and stores
appear at the CPU interface. Most of the time anything goes, so long as the software behaves correctly.

6.3.1 Read/write ordering and queues in the 34K core

To understand the timing of loads and stores (and sometimes instruction fetches), we need to say a little more about
the internal construction of the 34K core. In order to maximize performance:

• Loads are non-blocking: execution continues “through” a load instruction, and only stops when the program tries
to use the GPR value it just loaded.

• Writes are “posted”: a write from the core is put aside (the hardware stores both address and data) until the CPU
can get access to the system interface and send it off.

• Cache refills are completed “opportunistically”: the CPU may still be running on from a non-blocking load or
prefetch when data arrives back from the cache. The data required to make good a miss can be forwarded to the
relevant GP register, so the returning data is not urgently needed in the cache. The data waits until a convenient
moment before it gets put into the cache line.

All of these are implemented with “queues”, called the LDQ, WBB and FSB respectively. All the queues handle data
first-come, first served. They need to be snooped - a subsequent store to a location with a load pending had better not
be allowed to go ahead until the load is complete, for example. So each queue entry is tagged with the address of the
data it contains.

      An LDQ entry is required for every load that misses in the cache. Moreover, an LDQ entry must be available for
any load - even if it will hit in the cache, the logic requires that the LDQ entry is available if needed. This queue
allows the pipeline to keep running even though there are outstanding loads. When the load data is finally returned

Table 6.2 Fixed memory mapping
Segment Virtual range Physical range Cacheability

Name bits from
kuseg 0x0000.0000-0x7FFF.FFFF 0x4000.0000-0xBFFF.FFFF Config[KU]
kseg0 0x8000.0000-0x9FFF.FFFF 0x0000.0000-0x1FFF.FFFF Config[K0]
kseg1 0xA000.0000-0xBFFF.FFFF 0x0000.0000-0x1FFF.FFFF (uncached)

kseg2/3 0xC000.0000-0xFFFF.FFFF 0xC000.0000-0xFFFF.FFFF Config[K23]
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from the system, the LDQ and the main core logic act together to write this data into the correct GPR (which will then
wake the GPR's TC, if it was blocked on an attempt to use this register).

    The WBB (Write Back Buffer) queue holds data waiting to be sent out over the system interface, either from D-
cache writebacks or uncached/write-through store instructions.

    FSB (Fill Store buffer) queue entries are used to hold data that is waiting to be written into the D-cache. D-cache
writes are completed opportunistically in a gap between CPU-side cache accesses for loads and stores. An FSB entry
gets used during a cache miss (when it holds the refill data), or a write which hits in the cache (when it holds the data
the CPU wrote). Loads and stores snoop the FSB so that accesses to lines “in flight” can be dealt with correctly.

All this has a number of consequences which may be visible to software:

• Number of non-blocking loads which may be pending: the CPU has either four or nine LDQ entries according to
configuration (but it’s always at least one per TC.) That limits the number of outstanding loads. As mentioned
above, you can’t start a load - even one which will in fact hit in the cache - unless you have a free LDQ entry.

• Hit-under-miss: the D-cache continues to supply data on a hit, even though there are outstanding misses with
data in flight. FSB entries remember the in-flight data. So it is quite normal for a read which hits in the cache to
be “completed” - in the sense that the data reaches a register - before a previous read which missed.

• Write-under-miss: the CPU pipeline continues and can generate stores even though a read is pending, so long as
WBB slots are available. The 34K core’s “OCP” interface is non-blocking too (reads consist of separate address
and data phases, and writes are permitted between them), so this behavior can often be visible to the system.

• Miss under miss: the 34K core can continue to run until the pending read operations exhaust FSB or LDQ entries.

• Core interface ordering: at the core interface, read operations may be split into an address phase and a later data
phase, with other bus operations in between.

The 34K core - as is permitted by [MIPS32] - makes only limited promises about the order in which reads and
writes happen at the system interface. In particular, uncached or write-through writes may be overtaken by cache
line reads triggered by a load/store cache miss later in sequence. However, uncached reads and writes are always
presented in their pipeline sequence (program sequence inside a thread). Use a sync instruction where required,
as described in the next section.

6.3.2 The “sync” instruction in 34K

If you want to be sure that some other agent in the system sees a pair of transactions to uncached memory in the order
of the instructions that caused them, you should put a sync instruction between the instructions. Other MIPS32/64-

compliant CPUs may reorder loads and stores even more; portable code should use sync1.

But sometimes it’s useful to know more precisely what sync does on a particular core. On 34K sync:

• Stalls until all loads, stores, refills are completed and all write buffers are empty (that is until the LDQ, FSB and
WBB are empty);

• If the Config7[ES] bit is set, it will cause a synchronizing transaction on the OCP system interface2.

1. Note that sync is described as only working on "uncached pages or cacheable pages marked as coherent". But sync also
acts as a synchronization barrier to the effects produced by routine cache-manipulation instructions - hit-writeback and hit-
invalidate.
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6.3.3 Write gathering and “write buffer flushing” in 34K

We mentioned above that uncached writes to the system are performed somewhat lazily, the write being held in the
WBB queue until a convenient moment. That can have two system-visible effects:

• Writes can happen later than you think. Your write will happen before the next uncached read or write, but that’s
all you know. To make sure that a write has gone out on the OCP bus you can use a sync (as above): but that
meaning of sync is CPU-dependent, so that code is non-portable. Also, your write might still be posted some-
where in a system controller, unless you know your system is built to prevent it. Sometimes it’s better to code a
dummy uncached read from a nearby location (which will “flush out” buffered writes on pretty much any sys-
tem).

• Uncached writes to locations in the same “cache line”-sized chunk of memory may be gathered - stored together
in the WBB, and then dealt with by a single “wider” OCP write than the one you originally coded. Sometimes,
this is what you want. When it isn’t, put a sync between your successive writes.

6.3.4 Parity error exception handling and the CacheErr register

The 34K core does not check parity on data (or control fields) from the external interface - so this section really is just
about parity protection in the cache. It’s a build-time option, selected by your system integrator, whether to include
parity bits in the cache and parity check logic.

At a system level, a cache parity exception is usually fatal - though recovery might be possible sometimes, when it is
useful to know that the restart address is in ErrorEPC and you can return from the exception with an eret.

But mainly, diagnostic-code authors will probably find the CacheErr register’s extra information useful.

ER: was the error on an I-fetch (0) or on data (1)?

EC: in L1 cache (0) or higher-level cache (1)?

ED,ET: 1 for error in data field/tag field respectively.

ES: always zero on the 34K core - used to indicate an error detected during an external "snoop" for cache-coherent
CPUs.

EE: always 0 on the 34K core (it would be 1 if this error came from a parity error in data at the system interface, but
there’s no system parity on the core).

EB: 1 if data and instruction-fetch error reported on same instruction, which is unrecoverable. If so, the rest of the
register reports on the instruction-fetch error.

EF: unrecoverable (fatal) error (other than the EB type above). Some parity errors can be fixed by invalidating the
cache line and relying on good data from memory. But if this bit is set, all is lost... It’s one of the following:

1. Line being displaced from cache ("victim") has a tag parity error, so we don’t know whether to write it back,
or whether the writeback location (which needs a correct tag) would be correct.

2. This will be a read with the signal OC_MReqInfo[3] set. Handling of this transaction is system dependent, but a typical sys-
tem controller will flush any external write buffers and complete all pending transactions before telling the CPU that the
transaction is completed. Ask your system integrator how it works in your SoC.

Figure 6-1 Fields in the CacheErr register
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 0
ER EC ED ET ES EE EB EF SP EW Way 0 Index
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2. The victim’s tag indicates it has been written by the CPU since it was obtained from memory (the line is
"dirty" and needs a write-back), but it has a data parity error.

3. Writeback store miss and CacheErr[EW] error.

4. At least one more cache parity error happened concurrently with or after this one, but before we reached the
relative safety of the cache parity error exception handler.

SP: error affecting a scratchpad RAM access, see Section 6.5, "Scratchpad memory/SPRAM" below.

EW: parity error on the “dirty” (cache modified) or way-selection bits. That’s not recoverable.

Way: the way-number of the cache entry where the error occurred.

Index: the cache index (within the cache way) of the entry where the error occurred... except that the low bits are not
meaningful. The index is aligned as if a byte address, which is good because that’s what Index-type cache
instructions need. It identifies the failing doubleword for a data error, or just the failing line for a tag error.

The index-type cache instruction will need an “index” with the way bits glued on top of this cache-entry field; you
know how to put that together, because the shape of the cache is defined in the Config1-2 registers as shown in Figure
C-5.

6.3.5 ErrCtl register

This register controls parity protection of the L1 caches (if it was configured in your core in the first place) and pro-
vides for software testing of the whole cache array, including the otherwise-inaccessible way-selection RAM.

In summary: running software should set this register to 0x8000.0000 to enable cache parity checking, and to zero
otherwise. Other uses are more obscure, but the fields are as follows:

PE: 1 to enable cache parity checking. Hard-wired to zero if parity isn’t implemented.

PO: (parity overwrite) - set 1 to set the parity bit regardless of parity computation, which is only for diagnostic/test
purposes.

After setting this bit you can use cache IndexStoreTag to set the cache data parity to the value currently in
ErrCtl[PI] (for I-cache) or ErrCtl[PD] (for D-cache), while the tag parity is forcefully set from TagLo[P].

WST: test mode for cache IndexLoadTag/cache IndexStoreTag instructions, which then read/write the
cache’s internal "way-selection RAM" instead of the cache tags.

SPR: when set, index-type cache instructions work on the scratchpad/SPRAM, if fitted - see Section 6.5, "Scratchpad
memory/SPRAM".

PCO/PCI: precode override and data. Used for diagnostic/test of the I-cache feature which partially decodes
instructions at cache refill time. Not properly documented here.

PI/PD: parity bits being read/written to caches (I- and D-cache respectively).

ITC: set to make cache IndexLoadTag/cache IndexStoreTag operate on the control/configuration "tags"
for ITC storage locations - see Section 3.3.1, "Configuring ITC base address and cell repeat interval".

Figure 6-2 Fields in the ErrCtl register
31 30 29 28 27 26 25 24 23 19 18 13 12 4 3 0
PE PO WST SPR PCO ITC LBE WABE 0 PCI PI PD
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LBE, WABE: field indicating whether a bus error (the last one, if there’s been more than one) was triggered by a load or
a write-allocate respectively: see below. Where both a load and write-allocate are waiting on the same cache-line
refill, both could be set. These bits are “sticky”, remaining set until explicitly written zero.

6.3.6 Bus error exception

The CPU’s "OCP" hardware interface rules permit a slave device attached to the system interface to signal back when
something has gone wrong with a read. This should not be used to report a read parity error; if parity is checked exter-
nally, it would have to be reported through an interrupt. Typically a bus error means that some subsystem has failed to
respond.

Bus errors are not signalled on an OCP write cycle, and (if they were) the 34K core ignores them.

The bus error is imprecise; that is, EPC does not necessarily (or even usually) point to the instruction causing the
memory read (though it is precise for a bus error on an I-fetch).

Data-side bus errors are usually caused by a load: and the (non-blocking) load which caused it may have happened a
long time ago.

If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can han-
dle a bus error at that point.

On a load the hardware knows which TC or TCs were waiting for the load which went wrong, and the TCBind[TBE]
bit will be set for each suffering TC.

There is an obscure corner case. The 34K core’s D-cache is “write-allocate”: so a write which misses in the cache will
trigger a read to fill the cache line ready to receive the new data.

After a bus error you can look at ErrCtl[LBE]/ErrCtl[WABE] to see whether the error was caused by a load or write-
allocate.

6.4 Caches

Most of the time caches just work and are invisible to software... though your programs would go twenty times slower
without them. But this section is about when caches aren’t invisible any more.

Like most modern MIPS CPUs, the 34K core has separate primary I- and D-caches. They are virtually-indexed and
physically-tagged, so you may need to deal with cache aliases, see Section 6.4.7, "Cache aliases". The design pro-
vides for 16Kbyte, 32Kbyte or 64Kbyte caches; but the largest of those are likely to come with some speed penalty.
The 34K core’s primary caches are 4-way set associative.

But don’t hard-wire any of this information into your software. Instead, probe the Config1 register defined by
[MIPS32] to determine the shape and size of the cache.

6.4.1 Cacheability options

Any read or write made by the 34K core will be cacheable or not according to the virtual memory map. For addresses
translated by the TLB the cacheability is determined by the TLB entry; the key field appears as EntryLo[C]. Table 6.3
shows the code values used in EntryLo[C] - the same codes are used in the Config entries used to set the behavior of
regions with fixed mappings (the latter are described in Table C-4.)
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Some of the undefined cacheability code values are reserved for use in cache-coherent systems.

6.4.2 Uncached accelerated writes

The 34K core permits memory regions to be marked as “uncached accelerated”. This type of region is useful to hard-
ware which is “write only” - perhaps video frame buffers, or some other hardware stream. Sequential word stores in
such regions are gathered into cache-line-sized chunks, before being written with a single burst cycle on the CPU
interface.

Such regions are uncached for read, and partial-word or out-of-sequence writes have “unpredictable” effects - don’t
do them. The burst write is normally performed when software writes to the last location in the memory block or does
an uncached-accelerated write to some other block; but it can also be triggered by a sync instruction, a
prefnudge, a matching load or any exception. If the block is not completely written by the time it’s pushed out, it
will be written using a series of doubleword or smaller write cycles over the 34K core’s 64-bit memory interface.

6.4.3 The cache instruction and software cache management

The 34K core’s caches are not fully “coherent” and require OS intervention at times. The cache instruction is the
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the cache instruction also had a role when writing instructions (unless the programmer takes some
action, those instructions may only be in the D-cache whereas you need them to be fetched through the I-cache when
the time comes). See Section 6.4.4 “Cache management when writing instructions - the “synci” instruction” below.

A cache operation instruction is written: cache op,addr where the addr is just an address format, written as for
a load/store instruction. Cache operations are privileged and can only run in kernel mode (but see the note on the user-
privilege synci instruction at the end of this section). Generally we’re not showing you instruction encodings in this
book (you have software tools for that stuff) but in this case it’s probably necessary, so take a look at Figure 6-3.

The op field packs together a 2-bit field which selects which cache to work on:

Table 6.3 Cache Code Values

Code Cached? How it Writes Notes

0 cached write-through An unusual choice for a high-speed CPU, probably only for debug

2 uncached

3 cached writeback All normal cacheable areas

7 uncached “Uncached Accel-
erated”

Unusual and interesting mode for high-bandwidth write-only hardware; see
Section 6.4.2, "Uncached accelerated writes".

Figure 6-3 Fields in the encoding of a cache instruction
31 26 25 21 20 18 17 16 15 0

cache base op offset
47 register what

to do
which
cache

0 L1 I-cache
1 L1 D-cache
2 reserved for L3 cache
3 reserved for L2 cache
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and then adds a 3-bit field which encodes a command to be carried out on the line the instruction selects.

Before we list out the individual commands; the cache commands come in three flavors which differ in how they
specify the cache entry (the “cache line”) they will work on:

• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the
cache, nothing happens.

• Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previously invalid the data is fetched from memory.

• Index-type cache operation: as many low bits of the virtual address as are required are used to select the byte
within the cache line, then the cache line address inside one of the four cache ways, and then the way. You have
to know the size of your cache (discoverable from Config1-2) to know exactly where the field boundaries are, but
your address is used something like this:

Don’t define your own C names for cache manipulation operation codes, at least not if you can use [m32c0.h]

Once you’ve picked your cache and cache line you have a choice of operations you can perform on it. In fact, the 34K
core implements all the cache instructions defined by [MIPS32] (whether said there to be “required”, “recom-
mended” or “optional”) and all of those are shown in Table 6.4. ,

6.4.3.1 Read/write synchronization and the cache instruction

Before any cache instruction is allowed to execute, any outstanding loads and cache refills are completed, and any
outstanding stores or cache line writebacks are sent to the write buffer - that is, the LDQ, FSB and WBB queues are
all drained. This is somewhat like the 34K core-specific results of the sync instruction - but portable code should not
make that assumption.

6.4.4 Cache management when writing instructions - the “synci” instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a clean mechanism - available to user-level
code, not just at kernel privilege level - for ensuring that instructions you’ve just written are correctly presented for
execution (it combines a D-cache writeback with an I-cache invalidate). You should use it in preference to the tradi-
tional alternative of a D-cache writeback followed by an I-cache invalidate.

6.4.5 Cache management and multithreaded CPUs

The cache management registers are all replicated per-VPE but not per-TC, so obviously you have to avoid multiple
threads on the same VPE attempting to use cache operations concurrently.

Moreover, in 34K family cores the two VPEs share the cache. In general write-back operations and the kind of inval-
idate which automatically writes-back a dirty line may be safely run by either VPE at any time. All other operations
may cause undesirable effects unless you make sure they’re done by only one VPE at a time; and in particular, you
should get the cache initialized by one VPE running alone.

 31 5 4 0
Unused Way1-0 Index byte-within-line
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6.4.6 Cache initialization and tag/data registers

The ITagLo, DTagLo, IDataLo, IDataLo and IDataHi registers are used for staging tag information being read from
or written to the cache by some particular cache instructions (the 34K core has no “TagHi” registers, which are only
needed for CPUs with a bigger physical address range). [MIPS32] declares that the contents of these registers is
implementation dependent, so they are described here.

ITagLo is used for the I-cache and DTagLo for the D-cache. TagLo2 is reserved for secondary cache management, and
is not yet defined for the 34K family. Some other MIPS CPUs use the same staging register for the I- and D-cache,
and initialization software written for such CPUs is not portable to the 34K core.

For the cache itself, you will only need to use the data and tag registers for initialization and diagnostics. But you will
also need them when using cache instructions to configure and manage scratchpad memory (see the next section) and
ITC locations as described in Section 3.3 “Inter-thread communication storage (ITC)”.

cache line. Only diagnostic and test software will need to know details; but Figure 6-6 shows all the fields:

Table 6.4 Operations on a cache line available with the cache instruction
Value Command What it does

0 Index invalidate Sets the line to "invalid". If it’s a D-cache line which is valid and "dirty" (has been written
by CPU since fetched from memory), then write the contents back to memory first.
This is the best and simplest way to invalidate an I-cache when initializing the CPU -
though if your cache is parity-protected, you also need to fill it with good-parity data, see
Fill below.
And this is not suitable for initializing D-caches, where it might cause random write-
backs: see Index Store Tag type below.

1 Index Load Tag Read the cache line tag bits and addressed doubleword data into the I- or D-side cache tag
registers ITagLo, DTagLo etc. For diagnostics and geeks only.

2 Index Store Tag Set the cache tag from the ITagLo/ or DTagLo registers.
To initialize a D-cache from an unknown state, set the DTagLo/DTagHi registers to zero
and then do this to each line.

3 Index Store Data Write cache-line data. Not available for caches, but it is used for management of scratch-
pad RAM regions described in Section 6-8, "SPRAM (scratchpad RAM) configuration
information in TagLo" and ITC regions described in Section 3.3.1, "Configuring ITC
base address and cell repeat interval".

4 Hit invalidate hit-type invalidate - do not writeback the data even if dirty.
May cause data loss unless you know the line is not dirty.

5 Sorry, different meanings for code "5" on I- and D-caches.

Writeback invalidate On a D-cache: (hit-type operation) invalidate the line but only after writing it back, if
dirty. This is the recommended way of invalidating a D-cache line in a running cache.

Fill On an I-cache: (address-type operation) fill a suitable cache line from the data at the sup-
plied address - it will be selected just as if you were processing an I-cache miss at this
address.
Used to initialize an I-cache line’s data field, which should be done when setting up the
CPU when the cache is parity protected.

6 Hit writeback If the line is dirty, write it back to memory but leave it valid in the cache.
Used in a running system where you want to ensure that data is pushed into memory for
access by a DMA device or other CPU.

7 Fetch and Lock An address-type operation. Get the addressed data into the same line as would be used on
a regular cached reference (if the data wasn’t already cached that might involve writing
back the previous occupant of the cache line).
Then lock the line. Locked lines are not replaced on a cache miss.
It stays locked until explicitly invalidated with a cache instruction.
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ITagLo and DTagLo can be used in a special mode; when ErrCtl[WST] is 1, the appropriate TagLo register’s fields
change completely, as shown in Figure 6-7 below. But let’s look at the standard fields first:

PTagLo: the cache address tag - a physical address because the 34K core’s caches are physically tagged. It holds bits
31–12 of the physical address - the low 12 bits of the address are implied by the position of the data in the cache.

V: 1 when this cache line is valid.

D: 1 when this cache line is dirty (that is, it has been written by the CPU since being read from memory).

L: 1 when this cache line is locked, see Section 6.4.8, "Cache locking".

P: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select" RAM. When
you use the TagLo register to write a cache tag with cacheIndexStoreTag the

TagLo[P]: bit is generally not used - instead the hardware puts together your other fields and ensures it writes correct
parity. However, it is possible to force parity to exactly this value by first setting ErrCtl[PO].

When ErrCtl[WST] is set, cacheIndexLoadTag and cacheIndexStoreTag operations read/write the separate
“way-select RAM” used in the 34K core’s caches. Then the fields in ITagLo /DTagLo change to those shown in
Figure 6-7 above. These are:

WSDP: parity check for each of the "dirty" bits. It’s like the regular tag parity bit, in that this field is not normally used
when you’re writing into the way-select RAM. If you want to force these values in, you need to set ErrCtl[PO] to 1.

WSD: dirty bits - found on D-side only, so not in ITagLo.

WSLRU: LRU bits.

6.4.7 Cache aliases

34K core has caches which are virtually indexed. Since it’s quite routine to have multiple virtual mappings of the
same physical data, it’s possible for such a cache to end up with two copies of the same data. That’s not a problem for
the normal operation of caches for read-only data, but becomes troublesome:

• When you want to write the data: if a line is stored in two places, you’ll only update one of them and some data
will be lost (at least, there’s a 50% chance it will be lost!) This is obviously disastrous: systems generally work
hard to avoid aliases in the D-cache.

• When you want to invalidate the line in the cache: there’s a danger you might invalidate one copy but not the
other. This (more subtle) problem can affect the I-cache too.

It can be worked around. There’s no problem for different virtual mappings which generate the same cache index;
those lines will all compete for the 4 ways at that index, and they’re distinguished through the physical tag.

Figure 6-4 Fields in the ITagLo and DTagLo Registers
31 12 11 8 7 6 5 4 1 0

PTagLo 0 V D L 0 P

Figure 6-5 Fields in DTagLo/ITagLo when used for way-select RAM
31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

× WSDP WSD WSLRU 0 × 0 ×
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The 34K CPU’s smallest page size is 4Kbytes, that’s 212 bytes. The paged memory translation means that the low 12
bits of a virtual address is always reproduced in the physical address. Since a 16Kbyte, 4-way set-associative, cache
gets its index from the low 12 bits of the address, the 16Kbyte cache is alias-free. You can’t get aliases if each cache
“way” is no larger than the page size.

In 32Kbyte and 64Kbyte caches, one or two top bits used for the index are not necessarily the same as the correspond-
ing bits of the physical address, and aliases are possible. The value of the one or two critical virtual address bits is
sometimes called the page color.

It’s possible for software to avoid aliases if it can ensure that where multiple virtual mappings to a physical page exist,
they all have the same color. You do that by enforcing virtual-memory alignment rules (to at least a 16Kbyte bound-
ary) for shareable regions. It turns out this is practicable over a large range of OS activities: sharing code and libraries,
and deliberate interprocess shared memory. It is not so easy to do in other circumstances, particularly when pages to

be mapped start their life as buffers for some disk or network operation1...

So the 34K core contains logic to make the popular 32Kbyte D-cache alias-free (effectively one index bit is from the
physical address, and some ingenious tricks used to prevent that slowing the whole process excessively). The
Config7[AR] flag should read 1 if your 32Kbyte-D-cached core was built to be alias-free.

A 32Kbyte I-cache, or any 64Kbyte I- or D-cache, are subject to aliases.

6.4.8 Cache locking

[MIPS32] provides for a mechanism to lock a cache line so it can’t be replaced. This avoids cache misses on one par-
ticular piece of data, at the cost of reducing overall cache efficiency.

Caution: in complex software systems it is hard to be sure that cache locking provides any overall benefit - most
often, it won’t. You should probably only use locking after careful measurements have shown it to be effective for
your application.

Lock a line using a cache FetchAndLock (it will not in fact re-fetch a line which is already in the cache).

Unlock it using any kind of relevant cache "invalidate" instruction2 - but note that synci won’t do the job, and
should not be used on data/instruction locations which are cache-locked.

6.4.9 Cache control for Multithreading CPU

In normal circumstances all threads on an MT CPU simply share the cache. Because the L1 caches are 4-way set
associative, they should behave quite well even though the multiple threads will generally have a larger and more
complex working set of data and instructions. But if you really need to prevent threads (at least in different VPEs)
from competing for the same cache resources, you can do that by setting up the VPEOpt register, described in
Section 2.9.10, "VPEOpt register - reserve some cache "way" for use of one VPE" on page 40.

6.4.10 Cache management and multithreaded CPUs

The cache management registers are all replicated per-VPE but not per-TC, so obviously you have to avoid multiple
threads on the same VPE attempting to use cache operations concurrently.

1. There’s a fair amount of rather ugly code in the MIPS Linux kernel to work around aliases.
2. It’s possible to lock and unlock lines by manipulating values in the TagLo register and then using a

cacheIndex_Load_Tag instruction... but highly non-portable and likely to cause trouble. Probably for diagnostics only.
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Moreover, in 34K family cores the two VPEs share the cache. In general write-back operations and the kind of inval-
idate which automatically writes-back a dirty line may be safely run by either VPE at any time. All other operations
may cause undesirable effects unless you make sure they’re done by only one VPE at a time; and in particular, you
should get the cache initialized by one VPE running alone.

6.4.11 Cache initialization and tag/data registers

The ITagLo, DTagLo, IDataLo, IDataLo and IDataHi registers are used for staging tag information being read from
or written to the cache (the 34K core has no “TagHi” registers, which are only needed for CPUs with a bigger physi-
cal address range). [MIPS32] declares that the contents of these registers is implementation dependent, so they need
some words here.

ITagLo is used for the I-cache and DTagLo for the D-cache. TagLo2 is reserved for secondary cache management, and
is not yet defined for the 34K family. Some other MIPS CPUs use the same staging register for the I- and D-cache,
and initialization software written for such CPUs is not portable to the 34K core.

Before getting into the details, note that it’s a strong convention that you can write all-zeros to both ITagLo and
DTagLo registers and then use cache IndexStoreTag to initialize a cache entry to a legitimate (but empty)
state. Your cache initialization software should rely on that, not on the details of the registers.

Only diagnostic and test software will need to know details; but Figure 6-6 shows all the fields:

ITagLo and DTagLo can be used in a special mode; when ErrCtl[WST] is 1, the appropriate TagLo register’s fields
change completely, as shown in Figure 6-7 below. But let’s look at the standard fields first:

PTagLo: the cache address tag - a physical address because the 34K core’s caches are physically tagged. It holds bits
31–12 of the physical address - the low 12 bits of the address are implied by the position of the data in the cache.

¥: a field not described for the 34K core but which might not always read zero.

V: 1 when this cache line is valid.

D: 1 when this cache line is dirty (that is, it has been written by the CPU since being read from memory).

L: 1 when this cache line is locked, see Section 6.4.8, "Cache locking".

P: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select" RAM. When
you use the TagLo register to write a cache tag with cacheIndexStoreTag the

TagLo[P]: bit is generally not used - instead the hardware puts together your other fields and ensures it writes correct
parity. However, it is possible to force parity to exactly this value by first setting ErrCtl[PO].

When ErrCtl[WST] is set, cacheIndexLoadTag and cacheIndexStoreTag operations read/write the separate
“way-select RAM” used in the 34K core’s caches. Then the fields in ITagLo /DTagLo change to those shown in
Figure 6-7 above. These are:

Figure 6-6 Fields in the ITagLo and DTagLo Registers
31 12 11 10 9 8 7 6 5 4 1 0

PTagLo × 0 V D L 0 P

Figure 6-7 Fields in DTagLo/ITagLo when used for way-select RAM
31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

× WSDP WSD WSLRU 0 × 0 ×
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WSDP: parity check for each of the "dirty" bits. It’s like the regular tag parity bit, in that this field is not normally used
when you’re writing into the way-select RAM. If you want to force these values in, you need to set ErrCtl[PO] to 1.

WSD: dirty bits - found on D-side only, so not in ITagLo.

WSLRU: LRU bits.

6.5 Scratchpad memory/SPRAM

Most of MIPS Technologies’ cores can be equipped with a modestly sized high speed on-chip data memory, called
“scratchpad RAM” or “SPRAM”. SPRAM is connected to a cache interface, alongside the I- or D-cache, so is avail-
able separately for the I- and D-side (“ISPRAM” and “DSPRAM”).

MIPS Technologies provide the interface on which users can build many types and sizes of SPRAM. We also provide
a “reference design” for both ISPRAM and DSPRAM, which is what is described here. If you keep the programming
interface the same as the reference design, you’re more likely to be able to find software support. The reference
design allows for on-chip memories of up to 1Mbytes in size.

There are two possible motives for incorporating SPRAM:

• Dedicated high-speed memory: small SPRAM arrays run with cache timing. Larger arrays may require one or
more clocks of extra latency. Although that may still very fast compared with any memory access through the
OCP interface, the SPRAM is replacing single-cycle cache: multi-cycle instruction-side SPRAM is likely to
reduce performance substantially, and you should think hard before specifying it.

SPRAM can be made much larger than the maximum cache size.

Even for smaller sizes, it is possible to envisage applications where some particularly heavily-used piece of data
is well-served by being permanently installed in SPRAM. Possible, but unusual. In most cases heavily-used data
will be handled well by the D-cache, and until you really know otherwise it’s better for the SoC designer to max-
imize cache (compatible with his/her frequency needs.)

But there’s another more compelling use for a modest-size SPRAM:

• "DMA" accessible to external masters on the OCP interface: the SPRAM can be configured to be accessible
from an OCP interface. OCP masters will see it just as a chunk of memory which can be read or written.

Because SPRAM stands in for the cache, data passed through the SPRAM in this way doesn’t require any soft-
ware cache management. This makes it spectacularly efficient as a staging area for communicating with complex
I/O devices: a great way to implement "push" style I/O (that is where the device writes incoming data close to the
CPU).

SPRAM must be located somewhere within the physical address map of the CPU, and is usually accessed through
some “cached” region of memory (uncached region accesses work with the 34K reference design, but may not do so
on other implementations - better to keep it cached). It’s usually better to put it in the first 512Mbytes of physical
space, because then it will be accessible through the simple kseg0 “cached, unmapped” region - with no need to set up
specific TLB entries.

Because the SPRAM is close to the cache, it inherits some bits of cache housekeeping. In particular the cache
instruction and the cache tag CP0 registers are used to provide a way for software to probe for and establish the size

of SPRAM1, and (in the case of ISPRAM) to load instructions into it.
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Probing for SPRAM configuration

The presence of scratchpad RAM in your core is indicated by a “1” bit in one or both of the CP0 Config[ISP,DSP]
register flags described in Figure C-4. The MIPS Technologies reference design requires that you can query the size
of and adjust the location of scratchpad RAM through “cache tags”.

To access the SPRAM “tags” (where the configuration information is to be found) first set the ErrCtl[SPR] bit (see
Figure 6-2 above).

Now a cache Index_Load_Tag_D, 01 instruction fetches half the configuration information into DTagLo, and
a cache Index_Load_Tag, 8 gets the other half (the “8” steps to the next feasible tag location - an artefact of
the 64-bit width of the cache interface.) The corresponding operations directed at the primary I-cache read the halves
of the I-side scratchpad tag, this time into ITagLo. The fake tags for I-side and D-side SPRAM have the same format;
the information appears in TagLo fields as shown in Figure 6-8.

Where:

• base address[31:12]: the high-order bits of the physical base address of this chunk of SPRAM;

• En: enable the SPRAM. From power-up this bit is zero, and so long as it stays that way the SPRAM acts as
though it isn’t there;

• size of region in bytes/4KB: the number of page-size chunks of data mapped. If you take the whole 32 bits, it
returns the size in bytes (but it will always be a multiple of 4KB).

In some MIPS cores using this sort of tag setup there could be multiple scratchpad regions indicated by two or more
of these tag pairs. But the reference design provided with the 34K core can only have one I-side and one D-side
region.

You can load software into the ISPRAM using cacheops. Each pair of instructions to be loaded are put in the registers
IDataHi/IDataLo, and then you use a cache Index_Store_Data_I at the appropriate index. The two data regis-
ters work together to do a 64-bit transfer (the 34K core’s instruction memory really is 64 bits wide), so for a CPU con-
figured big-endian the first instruction in sequence is loaded into IDataHi, but for a CPU configured little-endian the
first instruction is loaded into IDataLo.

Don’t forget to set ErrCtl[SPR] back to zero when you’re done.

1. What follows is a hardware convention which SoC designers are not compelled to follow; but MIPS Technologies recom-
mends designers to do SPRAM this way to ease software porting.

1. The instructions are written as if using C “#define” names from [m32c0.h]

Figure 6-8 SPRAM (scratchpad RAM) configuration information in TagLo
31 12 11 8 7 6 5 4 1 0

TagLo physical address tag 0 valid dirty locked 0 parity

addr == 0 base address[31:12] 0 En 0
addr == 8 size of region in bytes/4KB 0
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6.6 The TLB and translation

The TLB is the key piece of hardware which MIPS architecture CPUs have for memory management. It’s a table
whose input is a virtual address together with the “address space identifier” from EntryHi[ASID] and whose output is a
physical address plus cacheability attributes. System software maintains the TLB as a cache of a much larger number
of possible translations, and a special-cased handler for the exception raised when there’s no suitable translation in
the TLB provides adequate performance. Read on for a summary of all the fields and how it gets used; but the OS
ramifications are far too extensive to cover here; for a better description in context see [SEEMIPSRUN]:, and for full
details of the architectural specification see [MIPS32].

6.6.1 The TLB array

Let’s start with a sketch of a TLB entry. For the 34K core, that consists of a virtual address portion to match against
and two output sections, something like Figure 6-9 - which also shows which TLB fields are carried in which CP0
registers.

Some points to make about the TLB entry:

• The input-side virtual address fields (to the left) have the fields necessary to match an incoming address against
this entry. "VPN" is (by OS tradition) a "virtual page number" - the high bits of the program (virtual) address.

"VPN2" is used to remind you that this address is for a pair of pages...

• The right-hand side (physical) fields are the information used to output a translation. There are a pair of outputs
for each input-match, and which of them is used is determined by the highest within-match address bit. So in
standard form (when we’re using 4Kbyte pages) each entry translates an 8Kbyte region of virtual address, but we
can map each 4Kbyte page onto any physical address (with any permission flag bits).

• The size of the input region is configurable because the “PageMask” determines how many incoming address bits
to match. The 34K core allows page sizes of 4Kbytes, 16Kbytes and going on in powers of 4 up to 256Mbytes.
That’s expressed by the legal values of PageMask, shown below.

• The "ASID" field extends the virtual address with an 8-bit, OS-assigned memory-space identifier so that transla-
tions for multiple different applications can co-exist in the TLB (in Linux, for example, each application has dif-
ferent code and data lying in the same virtual address region).

• The “G” (global) bit is not quite sure whether it’s on the input or output side - there’s only one, but it can be read
and written through either of EntryLo0-1. When set, it causes addresses to match regardless of their ASID value,
thus defining a part of the address space which will be shared by all applications. For example, Linux applica-
tions share some “kseg2” space used for kernel extensions.

Figure 6-9 Fields in a 34K™ core TLB entry
EntryHi EntryHi

VPN2 PageMask ASID G PFN Flags PFN Flags
C D V C D V

PageMask EntryLo1 EntryLo0
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6.6.2 The TLB and the MIPS® MT ASE

Cores in the 34K family are built with just one piece of TLB hardware. However, you can configure your CPU with
the TLB either shared between two VPEs, or partitioned so that each VPE sees a standard (though smaller) TLB
array.

TLB sharing will usually provide the best performance for when the VPEs are running the same kernel, are closely
collaborating, or when one of them makes little or no use of translated addresses. TLB sharing is not completely soft-
ware-transparent, and some OS work will be needed. See Section 4.2.2, "Sharing and not sharing the TLB" for
details.

6.6.3 Live translation and micro-TLBs

When you’re really tuning out the last cycle, you need to know that in the 34K core the translation is actually done by
two little tables local to the instruction fetch unit and the load/store unit - called the ITLB and DTLB respectively (or
generically, they’re “micro-TLBs” or “uTLB”). There are only 4 entries in the ITLB, and 8 in the DTLB and they are
functionally invisible to software: they’re automatically refilled from the main TLB when required, and automatically
cleared whenever the TLB is updated. It costs just three extra clocks to refill the uTLB for any access whose transla-
tion is not already in the appropriate uTLB.

6.6.4 Reading and writing TLB entries: Index, Random and Wired

Two CP0 registers work as simple indexes into the TLB array for programming: Index and Random. The oddly-
named Wired controls Random’s behavior.

Of these: Index determines which TLB entry is accessed by tlbwi. It’s also used for the result of a tlbp (the
instruction you use to see whether a particular address would be successfully translated by the CPU). Index only
implements enough bits to index the TLB, however big that is; but a tlbp which fails to find a match for the speci-
fied virtual address sets bit 31 of Index (it’s easy to test for).

Random is implemented as a full CPU clock-rate downcounter. It won’t decrement below the value of Wired (when it
gets there it bounces off and starts again at the highest legal index). In practice, when used inside the TLB refill
exception handler, it delivers a random index into the TLB somewhere between the value of Wired and the top.
Wired can therefore be set to reserve some TLB entries from random replacement - a good place for an OS to keep
translations which must never cause a TLB translation-not-present exception.

6.6.5 Reading and writing TLB entries - staging registers

The TLB is accessed through staging registers which between them represent all the fields in each TLB entry; they’re
called EntryHi, PageMask and EntryLo0-1. The fields from EntryHi and PageMask are shown in Figure 6-10.

All these fields act as staging posts for entries being written to or read from the TLB. But some of them are more
magic than that...

EntryHi[VPN2]: is the page-pair address to be matched by the entry this reads/writes - see above.

Figure 6-10 Fields in the EntryHi and PageMask registers
31 29 28 13 12 8 7 0

EntryHi VPN2 0 ASID

PageMask 0 Mask 0
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However, on a TLB-related exception VPN2 is automagically set to the virtual address we were trying to translate
when we got the exception. If - as is most often the case - the outcome of the exception handler is to find and install a
translation to that address, VPN2 (and generally the whole of EntryHi) will turn out to already have the right values in
it.

EntryHi[ASID]: does double-duty. It is used to stage data to and from the TLB, but in normal running software it’s also
the source of the current "ASID" value, used to extend the virtual address to make sure you only get translations for
the current process. Because of that role it is replicated per-TC in MIPS MT systems, and is also visible as
TCStatus[TASID].

PageMask[Mask]: acts as a kind of backward mask, in that a 1 bit means "don’t compare this address bit when
matching this address". However, only a restricted range of PageMask values are legal (that’s with "1"s filling the
PageMask[Mask] field from low bits upward, two at a time):

Note that the uTLBs handle only 4Kbyte and 1Mbyte page sizes; other page sizes are down-converted to 4Kbyte or
1Mbyte as they are referenced. For other page sizes this may cause an unexpectedly high rate of uTLB misses, which
could be noticeable in unusual circumstances.

Then moving our attention to the output side, the two EntryLo0-1 are identical in format as shown in Figure 6-11.

In EntryLo0-1:

PFN: the "physical frame number" - traditional OS name for the high-order bits of the physical address. 24 bits of PFN
together with 12 bits of in-page address make up a 36-bit physical address; but the 34K core has a 32-bit physical
address bus, and does not implement the four highest bits (which always read back as zero).

C: a code indicating how to cache data in this page - pages can be marked uncacheable and various flavours of
cacheable. The codes here are shared with those used in CP0 registers for the cacheability of fixed address regions:
see Table 6.3 in Section 6.4.1, "Cacheability options" on page 76 .

D: the "dirty" flag. In hardware terms it’s just a write-enable (when it’s 0 you can’t do a store using addresses translated
here, you’ll get an exception instead). However, software can use it to track pages which have been written to; when
you first map a page you leave this bit clear, and then a first write causes an exception which you note somewhere in
the OS’ memory management tables (and of course remember to set the bit).

V: the "valid" flag. You’d think it doesn’t make much sense - why load an entry if it’s not valid? But this is very helpful
so you can make just one of a pair of pages valid.

G: the "global" bit. This really belongs to the input side, and you don’t really want two values for it. So you should
always make sure this is the same in EntryLo0 and EntryLo1.

PageMask Size of each output page PageMask Size of each output page
0x0000.0000 4Kbytes 0x007F.E000 4Mbytes
0x0000.6000 16Kbytes 0x01FF.E000 16Mbytes
0x0001.E000 64Kbytes 0x07FF.E000 64Mbytes
0x0007.E000 256Kbytes 0x1FFF.E000 256Mbytes
0x001F.E000 1Mbyte

Figure 6-11 Fields in the EntryLo0-1 registers
31 30 29 6 5 3 2 1 0

0 PFN C D V G
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6.6.6 TLB initialization and duplicate entries

TLB entries come up to random values on power-up, and must be initialized by hardware before use. Generally, early
bootstrap software should go through setting each entry to a harmless “invalid” value.

Since the TLB is a fully-associative array and entries are written by index, it’s possible to load duplicate entries - two
or more entries which match the same virtual address/ASID. In older MIPS CPUs it was essential to avoid duplicate
entries - even duplicate entries where all the entries are marked “invalid”. Some designs could even suffer hardware
damage from duplicates. Because of the need to avoid duplicates, even initialization code ought to use a different vir-
tual address for each invalid entry; it’s common practice to use “kseg0” virtual addresses for the initial all-invalid
entries.

Most MIPS Technologies cores protect themselves and you by taking a “machine check” exception if a TLB update
would have created a duplicate entry - but in the 34K core that only happens if both entries are valid.

Earlier MIPS Technologies cores suffer a machine check even if duplicate entries are both invalid. That can happen
when initializing. For example, when an OS is initializing the TLB it may well re-use the same entries as already exist
- perhaps the ROM monitor already initialized the TLB, and (derived from the same source code) happened to use the
same dummy addresses. If you do that, your second initialization run will cause a machine check exception. The solu-
tion is for the initializing routine to check the TLB for a matching entry (using the tlbp instruction) before each
update.

For portability you should probably include the probe step in initialization routines: it’s not essential on the 34K core
or any machine conforming to the MIPS MT ASE, where we repeat that the machine check exception doesn’t happen
unless both the old and new entry are both marked as valid.
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Kernel-mode (OS) programming

[MIPS32] tells you how to write OS code which is portable across all compliant CPUs. Most OS code should not be
CPU-dependent, and we won’t tell you how to write it here. But release 2 of the MIPS32 Specification [MIPS32]
introduced a few new optional features which are not yet well known, so are worth describing here:

• A better way of managing software-visible pipeline and hardware delays associated with CP0 programming in
Section 7.1, "Hazard barrier instructions".

• New interrupt facilities described in Section 7.2, "MIPS32® Architecture Release 2 - enhanced interrupt
system(s)";

• The ability to use one or more extra sets of registers (“shadow sets”) to reduce context-saving overhead in inter-
rupt handlers, in Section 7.3, "Shadow registers".

• How to get at any power-saving features, in Section 7.4, "Saving Power"

7.1 Hazard barrier instructions

When privileged “CP0” instructions change the machine state, you can get unexpected behavior if an effect is
deferred out of its normal instruction sequence. But that can happen because the relevant control register only gets
written some way down the pipeline, or because the changes it makes are sensed by other instructions early in their
pipeline sequence.

Traditionally, MIPS CPUs left the kernel/low-level software engineer with the job of designing sequences which are
guaranteed to run correctly, usually by padding the dangerous operation with enough nop or ssnop instructions.

From Release 2 of the MIPS32 specification this is replaced by explicit hazard barrier instructions. If you execute a
hazard barrier between the instruction which makes the change (the “producer”) and the instruction which is sensitive
to it (the “consumer”), you are guaranteed that the change will be seen as complete. Hazards can appear when the
producer affects even the instruction fetch of the consumer - that’s an “instruction hazard” - or only affecting the
operation of the consuming instruction (an “execution hazard”). Hazard barriers come in two strengths: ehb deals
only with execution hazards, while eret, jr.hb and jalr.hb are barriers to both kinds of hazard.

In most implementations the strong hazard barrier instructions are quite costly, often discarding most or all of the
pipeline contents: they should not be used indiscriminately. For efficiency you should use the weaker ehb where it is
enough. Since some implementations work by holding up execution of all instructions after the barrier, it’s preferable
to place the barrier just before the consumer, not just after the producer

For example you might be updating a TLB entry:

mtc Index, t0
# other stuff, if there’s stuff to do
ehb
tlbwi
jr.hb ra
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The ehb makes sure that the change to Index has been made before you attempt to write the TLB entry, which is fine.
But updating the TLB might affect how instructions are fetched in mapped space, so you should not return to code
which might be running in mapped space until you’ve cleared the “instruction hazard”. That’s dealt with by the
jr.hb.

Hazard barriers and multi-threading

Within a thread the hazard barriers work as advertised. But because TCs share many CP0 registers and other
resources, some hazards can be between different threads - or more precisely, an instruction can produce some effect
on other threads which affect the behavior of subsequent instructions.

In particular, the operations which disable other threads (instructions like dmt or dvpe or direct manipulation of the
associated CP0 bits VPECtl[TE] and MVPCtl[EVP]. or writes to TCHalt) may not be immediate. Instructions after
the other-thread-disable instruction in the stream might - according to the MT ASE specification [MIPSMT] - see evi-
dence of other threads continuing to run for a while. The MT ASE defines this as an instruction hazard. However, no
hazard of this kind exists in 34K family CPUs, so if you’re prepared to make your software CPU-dependent you may
make it a bit more efficient.

Porting software to use the new instructions

If you know your software will only ever run on a MIPS32 Release 2 or higher CPU, then that’s great. But to maintain
software which has to continue running on older CPUs:

• ehb is a no-op: on all previous CPUs. So you can substitute an ehb for the last no-op in your sequence of
"enough no-ops", and your software is now safe on all future CPUs which are compliant with Release 2.

• jr.hb and jalr.hb: are decoded as plain jump-register and call-by-register instructions on earlier CPUs. Again, pro-
vided you already had enough no-ops for your worst-case older CPU, your system should now be safe on Release
2 and higher CPUs.

7.2 MIPS32® Architecture Release 2 - enhanced interrupt system(s)

The features for handling interrupts include:

• Vectored Interrupt (VI) mode offers multiple entry points (one for each of the interrupt sources), instead of the
single general exception entry point.

External Interrupt Controller (EIC) mode goes further, and reinterprets the six core interrupt input signals as a
64-value field - potentially 63 distinguished interrupts each with their own entry point (the zero code, of course,
is reserved to mean “no interrupt active”).

Both these modes need to be explicitly enabled by setting bits in the Config3 register; if you don’t do that, the
CPU behaves just as the original (release 1) MIPS32 specification required.

• Shadow registers - alternate sets of registers, often reserved for interrupt handlers, are described in Section 7.3,
"Shadow registers". Interrupt handlers using shadow registers avoid the overhead of saving and restoring user
GPR values.

• New readable Cause[TI] and Cause[PCI] bits provide a direct indication of pending interrupts from the on-core
timer and performance counter subsystems (these interrupts are potentially shared with other interrupt inputs,
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and it previously required system-specific programming to discover the source of the interrupt and handle it
appropriately).

The new interrupt options are enabled by the IntCtl register, whose fields are shown in Figure 7-1.

Notes:

IntCtl[IPTI,IPPCI]: are read-only fields, telling you how timer and performance counter interrupts (generated inside the
core) are wired up. It’s relevant in non-vectored and simple-vectored ("VI") interrupt modes.

The timer and performance counter interrupts are taken out to the core interface, where they are generally sent back
again down one of the interrupt signals. The SoC designer who wires up the interrupts is also supposed to hardware
code values which turn into the IntCtl[IPTI,IPPCI] fields. Each is a 3-bit binary number identifying which CPU inter-
rupt input is shared by the internal timer interrupt (IPTI) or the performance counter overflow interrupt (IPPCI).

The interrupt is specified by giving the number of the Cause[IPnn] where the resulting interrupt is seen. Because
Cause[IP0-1] are software interrupt bits, unconnected to any input, legal values for IntCtl[IPTI] and IntCtl[IPPCI] are
between 2 and 7.

The timer interrupt output is per-VPE, so there are two of them from the 34K core. The IntCtl register is also per-
VPE, reflecting the local setup. The performance counter registers are not replicated (there’s just one set per CPU).

IntCtl[VS]: is writable to give you software control of the vector spacing; the spacing you get between consecutive
entries is IntCtl[VS]×32 bytes. Only values of 1, 2, 4, 8 and 16 work (to give spacings of 32, 64, 128, 256, and 512
bytes respectively). A value of zero does give a zero spacing, so all interrupts arrive at the same address.

7.2.1 Traditional MIPS interrupt signalling and priority

Before we discuss the new features, we should remind you what was there already. On traditional MIPS systems the
CPU takes an interrupt exception on any cycle where one of the eight possible interrupt sources visible in Cause[IP]
is active, enabled by the corresponding enable bit in Status[IM], and not otherwise inhibited. When that happens con-
trol is passed to the general exception handler (see Table C.4 for exception entry point addresses), and is recognized
by the “interrupt” value in Cause[ExcCode]. All interrupt are equal in the hardware, and the hardware does nothing
special if two or more interrupts are active and enabled simultaneously. All priority decisions are down to the soft-
ware.

Six of the interrupt sources are hardware signals brought into the CPU, while the other two are “software interrupts”
taking whatever value is written to them in the Cause register.

The original MIPS32 specification adds an option to this. If you set the Cause[IV] bit, the same priority-blind inter-
rupt handling happens but control is passed to an interrupt exception entry point which is separate from the general
exception handler.

Figure 7-1 Fields in the IntCtl register
31 29 29 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0
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7.2.2 VI mode - interrupt signalling and priority

The traditional interrupt system fits with a RISC philosophy (it leaves all interrupt priority policy to software). It’s
also OK with complex operating systems, which commonly have a single piece of code which does the housekeeping
associated with interrupts prior to calling an individual device-interrupt handler.

A single entry point doesn’t fit so well with embedded systems using very low-level interrupt handlers to perform
small near-the-hardware tasks. So Release 2 of the MIPS32 architecture adds “VI interrupt mode” where interrupts
are despatched to one of eight possible entry points. To make this happen:

1. Config3[VInt] must be set, to indicate that your core has the vectored-interrupts feature - but all cores in the 34K
family have it;

2. You write Cause[IV] = 1 to request that interrupts use the special interrupt entry point; and:

3. You set IntCtl[VS] non-zero, setting the spacing between successive interrupt entry points.

Then interrupt exceptions will go to one of eight distinct entry points. The bit-number in Cause[IP] corresponding to
the highest-numbered active interrupt becomes the “vector number” in the range 0-7. The vector number is multiplied
by the “spacing” implied by the OS-written field IntCtl[VS] (see above) to generate an offset. This offset is then added
to the special interrupt entry point (already an offset of 0x200 from the value defined in EBase) to produce the entry
point to be used.

If multiple interrupts are active and enabled, the entry point will be the one associated with the higher-numbered
interrupt: in VI mode interrupts are no longer all equal, and the hardware now has some role in interrupt “priority”.

7.2.3 External Interrupt Controller (EIC) mode

Embedded systems have lots of interrupts, typically far exceeding the six input signals traditionally available. Most
systems have an external interrupt controller to allow these interrupts to be masked and selected. If your interrupt
controller is “EIC compatible” and you use these features, then you get 63 distinct interrupt entry points.

To do this the same six hardware signals used in traditional and VI modes are redefined as a bus with 64 possible val-

ues1: 0 means “no interrupt” and 1-63 represent distinct interrupts.   That’s “EIC interrupt mode”, and you’re in EIC
mode if you would be in VI mode (see previous section) and additionally the Config3[VEIC] bit is set. EIC mode is a
little deceptive: the programming interface hardly seems to change, but the meaning of fields change quite a bit.

Firstly, once the interrupt bits are grouped the interrupt mask bits in Status[IM] can’t just be bitwise enables any more.
Instead this field (strictly, the 6 high order bits of this field, excluding the mask bits for the software interrupts) is
recycled to become a 6-bit Status[IPL] (“interrupt priority level”) field. Most of the time (when running application
code, or even normal kernel code) Status[IPL] will be zero; the CPU takes an interrupt exception when the interrupt
controller presents a number higher than the current value of Status[IPL] on its “bus” and interrupts are not otherwise
inhibited.

As before, the interrupt handler will see the interrupt request number in Cause[IP] bits - see Section C-2, "Fields in
the Cause register"; the six MS of those bits are now relabelled as Cause[RIPL] (“requested IPL”). In EIC mode the
software interrupt bits are not used in interrupt selection or prioritization: see below. But there’s an important differ-
ence; Cause[RIPL] holds a snapshot of the value presented to the CPU when it decided to take the interrupt, whereas

the old Cause[IP] bits simply reflected the real-time state of the input signals2.

1. The resulting system will be familiar to anyone who’s used a Motorola 68000 family device (or further back, a DEC PDP/11
or any of its successors).
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When an exception is triggered the new IPL - as captured in Cause[RIPL] - is used directly as the interrupt number;
it’s multiplied by the interrupt spacing implied by IntCtl[RS] and added to the special interrupt entry point, as
described in the previous section. Cause[RIPL] retains its value until the CPU next takes any exception.

Software interrupts: the two bits in Cause[IP1-0] are still writable, but now become real signals which are fed out of
the CPU core, and in most cases will become inputs - presumably low-priority ones - to the EIC-compliant interrupt
controller.

In EIC mode the usual association of the internal timer and performance-counter overflow interrupts with individual
bits of Cause[IP] is lost. Timer and performance counter interrupts are turned into output signals from the core, and
will themselves become inputs to the interrupt controller. Ask your system integrator how they are wired.

7.3 Shadow registers

In hardware terms, shadow registers are deceptively simple: just add one or more extra copies of the register file. If
you can automatically change register set on an exception, the exception handler will run with its own context, and
without the overhead of saving and restoring the register values belonging to the interrupted program. On to the
details...

MIPS shadow registers come as one or more extra complete set of 32 general purpose registers. The CPU only
changes register sets on an exception or when returning from an exception with eret.

In the 34K core (and possibly other CPUs conforming to [MIPSMT]) there are no dedicated shadow registers, but you
can configure the CPU to make the registers of one or more TCs available as shadow sets, as described in
Section 7.3.1.

Selecting shadow sets - SRSCtl

The shadow set selectors are in the SRSCtl register, shown in Figure 7-2.

In SRSCtl:

SRSCtl[HSS]: read-only field showing the highest-numbered register set available on this VPE/CPU.  The ordinary
register set is set #0, so this is the number of available register sets minus one.

On single-threaded CPUs this field is fixed. However, on the 34K core this field can change when configuration soft-
ware - that is, when VPEConf0[VPC] is set - changes the way the shadow sets are shared. See Section 7.3.1 below for
how multithreading TCs can be used as shadow sets.

SRSCtl[CSS]: the register set currently in use. It’s read-only here; set on any exception, replaced by the value in
SRSCtl[PSS] on an eret.

SRSCtl[ESS]: this writable field is the software-selected register set to be used for "all other" exceptions; that’s other
than an interrupt in VI or EIC mode (both have their own special ways of selecting a register set).

2. Since the incoming IPL can change at any time - depending on the priority views of the interrupt controller - this is essential
if the handler is going to know which interrupt it’s servicing.

Figure 7-2 Fields in the SRSCtl register (shadow register set control)
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS
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SRSCtl[PSS]: the "previous" register set, which will be used following the next eret.

You can get at the values of registers in this set using rdpgpr and wrpgpr.

SRSCtl[PSS] is writable, allowing the OS to dispatch code in a new register set; load this value and then execute an
eret.

SRSCtl[EICSS]: will be explained in the next section.

Just a note: SRSCtl[PSS] and SRSCtl[CSS] are not updated by all exceptions, but only those which write a new return
address to EPC (or equivalently, those occasions where the exception level bit Status[EXL] goes from zero to one).
Exceptions where EPC is not written include:

• Exceptions occurring with Status[EXL] already set;

• Cache parity error exceptions, where the return address is loaded into ErrorEPC;

• EJTAG debug exceptions, where the return address is loaded into DEPC.

How new shadow sets get selected on an interrupt

In EIC mode, the external interrupt controller proposes a shadow register set number with each requested interrupt
(nonzero IPL). When the CPU takes an interrupt, the externally-supplied set number determines the next set and is
made visible in SRSCtl[EICSS] until the next interrupt.

In VI mode (no external interrupt controller) the core sees only eight possible interrupt numbers; the SRSMap register
contains eight 4-bit fields, defining the register set to use for each of the eight interrupt levels, as shown in Figure 7-3.

In SRSMap, each of the SSV7-0 fields has the shadow set number to be used when handling the interrupt for the cor-
responding Cause[IP7-0] bit. A zero shadow set number means not to use a shadow set.

If you are remaining with "classic" interrupt mode, it’s still possible to use one shadow set for all exception handlers -
including interrupt handlers - by setting SRSCtl[ESS] non-zero.

Software support for shadow registers

Shadow registers work “as if by magic” for short interrupt routines which run entirely in exception mode (that is, with
Status[EXL] set). The shadow registers are not just efficient because there’s no need to save user registers; the shadow
registers can also be used to hold contextual information for one or more interrupt routines which uses a particular
shadow set. For more ambitious interrupt nesting schemes, software must save and stack copies of SRSCtl[PSS]
alongside its copies of EPC; and it’s entirely up to the software to determine when an interrupt handler can just go
ahead and use a register set, and when it needs to save values on entry and restore them on exit. That’s at least as dif-
ficult as it sounds: shadow sets are probably best used purely for very low-level, high-speed handlers.

Figure 7-3 Fields in the SRSMap register
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0
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7.3.1 Recycling multi-threading CPU’s TCs as shadow sets

This recycling is controlled by some TC control bits and the SRSConf0-4 registers.

In SRSConf0:

M: is a "continuation" indication. Since there is no SRSConf1 in the 34K core, it will read zero.

In general there need be no more of these registers than are required to map your core’s maximum complement of
shadow register sets.

SRS1-3: are each set to the GPR set to be used for the putative shadow set number (1-3).

Shadow set 0 refers (in a MIPS MT CPU) to the register set normally associated with the current TC.

A value of all-ones in any of the (10-bit) SRS1-3 fields (decimal 1023) indicates that this shadow set number is not
usable - it won’t select a set of registers.

The fact that there are no more “SRSConf” registers means that shadow set numbers above 4 are never usable for the
34K core.

These fields may be writable (waiting to receive the number of a TC you sacrifice to provide a shadow set) or hard-
wired (representing dedicated shadow register sets, whose “GPR number” will be larger than the maximum TC# of
the machine.)

From reset, the writable fields take the value 1022. You just write the number of the TC you’re sacrificing. Unless the
donor TC is already bound to the same VPE as owns this SRSConf register, nothing happens. You should also make
sure the donor TC is halted, inactive and not usable by fork.

It’s possible to reverse this process and seize back a TC, so long as the shadow set concerned is no longer in use.

Note that SRSConf0 is replicated per-VPE.

7.4 Saving Power

There are basically just a couple of facilities:

• The wait instruction: this puts the thread running to sleep. When this happens when all other threads are sleep-
ing, halted or suspended, the core goes into a low-power mode with many clocks stopped, from which it will only
emerge when it senses an interrupt. The interrupt will be delivered to any sleeping thread, but all sleeping threads
will wake and return from their wait. That will usually be OK; it’s normal practice to loop over wait.

• The Status[RP] bit: this doesn’t do anything inside the core, but its state is made available at the core interface as
SI_RP. Logic outside the core is encouraged to use this to control any logic which trades off power for speed -
most often, that will be slowing the master clock input to the CPU.

Figure 7-4 Fields in the SRSConf0 register
31 30 29 20 19 10 9 0
M 0 SRS3 SRS2 SRS1



 Kernel-mode (OS) programming

96 Programming the MIPS32® 34K™ Core Family, Revision 01.30

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.



Chapter 8

Programming the MIPS32® 34K™ Core Family, Revision 01.30 97

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

34K™ core features for debug and profiling

In this chapter you’ll find:

• Section 8.1, "EJTAG on-chip debug unit"

• Section 8.2, "PDtrace™ instruction trace facility"

• Section 8.3, "CP0 Watchpoints" - monitor code and data access without using EJTAG.

• Section 8.4, "Performance counters" - gather statistics about events, useful for understanding where your pro-
gram spends its time.

The description here is terse and leaves out some information about EJTAG and PDtrace facilities which is not visible
to programmers. We will document it here if it’s software visible, or is implementation-dependent information not
found in the detailed manuals ([EJTAG], [PDTRACEUSAGE] and [PDTRACETCB]

8.1 EJTAG on-chip debug unit

This is a collection of in-CPU resources to support debug. Debug logic serves no direct purpose in the final end-user
application, so it’s always under threat of being omitted for cost reasons. A debug unit must have virtually no perfor-
mance impact when not in use; it must use few or no dedicated package pins, and should not increase the logic gate
count too much. EJTAG solves the pin issue (and gets its name) by recycling the JTAG pins already included in every

SoC for chip test1.

So the debug unit requires:

• Physical communications with some kind of "probe" device (which is itself controlled by the debug host),
achieved through the JTAG pins.

• The ability for a probe to “remote-control” the CPU. The basic trick is to get the CPU to execute instructions that
the probe supplies. In turn that’s done by directing the CPU to execute code from the magic “dmseg” region
where CPU reads and writes are made down the wire to the probe. “dmseg” is itself a part of “dseg”, see Section
8.1.5, "The “dseg” memory decode region".

• A distinguished debug exception. In MIPS EJTAG, this is a special “super-exception” marked by a special
debug-exception-level flag, so you can use an EJTAG debugger even on regular exception handler code. See
Section 8.1.2, "Debug mode" below;

• A number of “hardware breakpoints”. Their numerous control registers can’t be accommodated in the CP0 regis-
ter set, so are memory mapped into “dseg”;

1. It can actually be quite useful to provide EJTAG with its own pins, if your package permits.
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• You can take a debug exception from a special breakpoint instruction sdbbp, on a match from an EJTAG hard-
ware breakpoint, after an EJTAG single-step, when the probe writes the break bit EJTAG_CONTROL[EjtagBrk],
or by asserting the external DINT (debug interrupt) signal.

• You can configure your hardware to take periodic snapshots of the address of the currently-executing instruction
(“PC sampling”) and make those samples available to an EJTAG probe, as described in the next section.

On these foundations powerful debug facilities can be built.

The multi-vendor [EJTAG] specification has many independent options, but MIPS Technologies cores tend to have
fewer options and to implement the bulk of the EJTAG specification. The 34K core can be configured by your SoC
designer with either four instruction breakpoints (or none), and with two data breakpoints (or none). It is also optional
whether the dedicated debug-interrupt signal DINT is available in your SoC.

8.1.1 Debug communications through JTAG

The chip’s JTAG pins give an external probe access to a special registers inside the core. The JTAG standard defines a
serial protocol which lets the probe run one of a number of JTAG “instructions”, each of which typically reads/writes
one of a number of registers. EJTAG’s instructions are shown in Table 8.1.

8.1.2 Debug mode

A special CPU state; the CPU goes into debug mode when it takes any debug exception - which can be caused by an
sddbp instruction, a hit on an EJTAG breakpoint register, from the external “debug interrupt” signal DINT, or single-
stepping (the latter is peculiar and described briefly below). Debug mode state is visible as Debug[DM] (see Figure 8-
1 below). Debug mode (like exception mode, which is similar) disables all normal interrupts. The address map
changes in debug mode to give you access to the “dseg” region, described below. Quite a lot of exceptions just won’t
happen in debug mode: those which do, run peculiarly - see the relevant paragraphs in Section 8.1.2, "Debug mode".

Table 8.1 JTAG instructions for the EJTAG unit
JTAG "Instruction" Description

IDCODE Reads out the MIPS core and revision - not very interesting for software, not described
further here.

ImpCode Reads bit-field showing what EJTAG options are implemented - see Figure 8-5 below.
EJTAG_ADDRESS (read/write) together, allow the probe to respond to instruction fetches and data reads/

writes in the magic “dmseg” region described in Section 8.1.5, "The “dseg” memory
decode region".

EJTAG_DATA

EJTAG_CONTROL Package of flags and control fields for the probe to read and write; see Figure 8-6 below.
EJTAGBOOT The “EJTAGBOOT” instruction causes the next CPU reset to lead to CPU booting from

probe; see description of the EJTAG_CONTROL bits ProbEn, ProbTrap and
EjtagBrk in the notes Figure 8-6.
The “NORMALBOOT” instruction reverts to the normal CPU bootstrap.

NORMALBOOT

FASTDATA Special access used to accelerate multi-word data transfers with probe. The probe reads/
writes the 33-bit register formed of EJTAG_CONTROL[PrAcc] with EJTAG_DATA.

TCBCONTROLA Access registers used to control “PDtrace” instruction trace output, if available. See
Section 8.2.1, "34K core-specific fields in PDtrace™ JTAG-accessible registers" - only
the core-specific fields in these registers are documented here.

TCBCONTROLB

TCBCONTROLC

TCBADDRESS

PCSAMPLE Access register which holds PC sample value, see Section 8.1.12, "PC Sampling with
EJTAG".
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A CPU with a suitable probe attached can be set up so the debug exception entry point is in the “dmseg” region, run-
ning instructions provided by the probe itself. With no probe attached, the debug exception entry point is in the ROM
- see Section C.4, "Exception entry points".

8.1.3 The debug unit and multi-threading

The software-visible resources of the EJTAG unit are replicated per VPE, and each VPE has its own distinct JTAG
“tap”. Just two bits are replicated per-TC: Debug[SSt] controls the single-step exception, and Debug[OffLine] pro-
vides a debugger with a way of controlling exactly which TCs run in between breakpoints of a debug session.

When any TC executes in debug mode, all other TCs (even in other VPEs) are suspended. There is nothing software
can do to prevent a debug-mode TC from issuing instructions: it runs regardless of the state of TCStatus[A], TCHalt,
the VPEControl[TE] bit set by dmt, the MVPControl[EVP] bit set by dvpe, the VPEConf0[VPA] bit, or even the debug-
ger’s own Debug[OffLine]. However, when you return from debug mode with a deret and one of these software
inhibit bits is active, the TC will not execute any non-debug-mode instruction.

When you execute a debug breakpoint (sdbbp) instruction or hit a synchronous (address-testing only) breakpoint,
the debug exception will be handled by the TC which ran the exception-causing instruction. But an asynchronous
entry into debug mode caused by the assertion of DINT or hitting a data-testing breakpoint may use any TC affiliated
with the VPE which owns the signal or set the breakpoint: and again, this TC is chosen regardless of its software-set-
table state, so you are guaranteed that the debug condition will be serviced.

When any TC is already executing in debug mode DINT (even if directed at another VPE) is ignored.

For non-debug code some MT facilities are protected by “safety catch” control bits. Debug-mode code is all-power-
ful, as if VPEConf0[MVP] was set.

Exceptions in debug mode

Software debuggers will probably be coded to avoid causing exceptions (testing addresses in software, for example,
rather than risking address or TLB exceptions).

While executing in debug mode many conditions which would normally cause an exception are ignored: interrupts,
debug exceptions (other than that caused by executing sdbbp), and CP0 watchpoint hits.

But other exceptions are turned into "nested debug exceptions" when the CPU is in debug mode - a facility which is
probably mostly valuable to debuggers using the EJTAG probe.

On such a nested debug exception the CPU jumps to the debug exception entry point, remaining in debug mode. The
Debug[DExcCode] field records the cause of the nested exception, and DEPC records the debug-mode-code restart
address. This will not be survivable for the debugger unless it saved a copy of the original DEPC soon after entering
debug mode, but it probably did that! To return from a nested debug exception like this you don’t use deret (which
would inappropriately take you out of debug mode), you grab the address out of DEPC and use a jump-register.

8.1.4 Single-stepping

When control returns from debug mode with a deret and the (per-TC) single-step bit Debug[SSt] is set, the instruc-

tion selected by DEPC will be executed in non-debug context1; then a debug exception will be taken on the thread’s
very next instruction in sequence.

1. If DEPC points to a branch instruction, both the branch and branch-delay instruction will be executed normally.
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Since at least one instruction is run in normal mode it can lead to a non-debug exception; in that case the “very next
instruction in sequence” will be the first instruction of the exception handler, and you’ll get a single-step debug
exception whose DEPC points at the exception handler.

In a multithreaded CPU any number of instructions from other threads might run before you get the single-step exception. A
debugger wanting to avoid that can use the various TC’s Debug[OffLine] controls to inhibit TCs other than the one under debug,

8.1.5 The “dseg” memory decode region

EJTAG needs to use memory space both to accommodate lots of breakpoint registers (too many for CP0) and for its
probe-mapped communication space. This memory space pops into existence at the top of the CPU’s virtual address
map when the CPU is in debug mode, as shown in Table 8.2.
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Notes on Table 8.2:

• dseg: is the whole debug-mode-only memory area.

It’s possible for debug-mode software to read the “kseg2”-mapped locations “underneath” by setting
Debug[LSNM] (see Table 8-1 below).

Table 8.2 EJTAG debug memory region map ("dseg")
Virtual Address Region/sub-regions Location/register Virtual Address
0xE000.0000 kseg2 0xE000.0000

0xFF1F.FFFF 0xFF1F.FFFF

0xFF20.0000 dseg dmseg fastdata 0xFF20.0000

0xFF20.000F 0xFF20.000F

0xFF20.0010 0xFF20.0010

0xFF20.0200 debug entry 0xFF20.0200

0xFF2F.FFFF 0xFF2F.FFFF

0xFF30.0000 drseg DCR register 0xFF30.0000
0xFF30.1000 IBS register 0xFF30.1000

I-breakpoint #1 regs

0xFF30.1100 IBA1 0xFF30.1100

0xFF30.1108 IBM1 0xFF30.1108

0xFF30.1110 IBASID1 0xFF30.1110

0xFF30.1118 IBC1 0xFF30.1118

I-breakpoint #2 regs

0xFF30.1200 IBA2 0xFF30.1200

0xFF30.1208 IBM2 0xFF30.1208

0xFF30.1210 IBASID2 0xFF30.1210

0xFF30.1218 IBC2 0xFF30.1218

same for next two

...

0xFF30.2000 DBS register 0xFF30.2000
D-breakpoint #1 regs

0xFF30.2100 DBA1 0xFF30.2100

0xFF30.2108 DBM1 0xFF30.2108

0xFF30.2110 DBASID1 0xFF30.2110

0xFF30.2118 DBC1 0xFF30.2118

0xFF30.2120 DBV1 0xFF30.2120

0xFF30.2124 DBVHi1 0xFF30.2124

D-breakpoint #2 regs

0xFF30.2200 DBA2 0xFF30.2200

0xFF30.2208 DBM2 0xFF30.2208

0xFF30.2210 DBASID2 0xFF30.2210

0xFF30.2218 DBC2 0xFF30.2218

0xFF30.2220 DBV2 0xFF30.2220

0xFF30.2224 DBVHi2 0xFF30.2224

0xFF30.2228 0xFF30.2228

0xFFFF.FFFF 0xFFFF.FFFF
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• dmseg: is the memory region where reads and writes are implemented by the probe. But if no active probe is
plugged in, or if DCR[PE] is clear, then accesses here cause reads and writes to be handled like regular "kseg3"
accesses.

• drseg: is where the debug unit’s main register banks are accessed. Accesses to "drseg" don’t go off core. Regis-
ters in "drseg" are word-wide, and should be accessed only with 32-bit word-wide loads and stores.

• fastdata: is a corner of "dmseg" where probe-mapped reads and writes use a more JTAG-efficient block-mode
probe protocol, reducing the amount of JTAG traffic and allowing for faster data transfer. There’s no details about
how it’s done in this document, see [EJTAG].

• debug entry: is the debug exception entry point. Because it lies in "dmseg", the debug code can be implemented
wholly in probe memory, allowing you to debug a system which has no physical memory reserved for debug.

8.1.6 EJTAG CP0 registers, particularly Debug

In normal circumstances (specifically, when not in debug mode), the only software-visible part of the debug unit is its
set of three CP0 registers:

• Debug which has configuration and control bits, and is detailed below;

• DEPC keeps the restart address from the last debug exception (automatically used by the deret instruction);

• DESAVE is a CP0 register which is just 32-bits of read/write space. It’s available for a debug exception handler
which needs to save the value of a first general-purpose register, so that it can use that register as an address base
to save all the others.

Debug, DEPC and DESAVE are replicated per-VPE, giving each VPE the impression of having its own EJTAG unit.

Debug is the most complicated and interesting. It has so many fields defined that we’ve taken them in three groups:
debug exception cause bits in Figure 8-2, information about regular exceptions which want to happen but can’t
because you’re in debug mode in Figure 8-3, and everything else. The "everything else" category includes the most
important fields and comes first, in Figure 8-1.
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These fields are:

DBD: exception happened in branch delay slot. When this happens DEPC will point to the branch instruction, which is
usually the right place to restart.

DM: debug mode - set on debug exception from user mode, cleared by deret.

Then some configuration and control bits:

NoDCR: read-only - 0 if there is a memory-mapped DCR register. MIPS Technologies cores will always have one. Any
EJTAG unit implementing "dseg" at all implements DCR.

LSNM: Set this to 1 if you want debug-mode accesses to "dseg" addresses to be just sent to system memory. This makes
most of the EJTAG unit’s control system unavailable, so will probably only be done around a particular load/store.

Doze: before the debug exception, CPU was in some kind of reduced power mode.

Halt: before the debug exception, the CPU was stopped - probably asleep after a wait instruction.

CountDM: 1 if and only if the count register continues to run in debug mode. Writable for the 34K core, so you get to
choose. On some other implementations it’s read-only and just tells you what the CPU does.

IEXI: set to 1 to defer imprecise exceptions. Set by default on entry to debug mode, cleared on exit, but writable. The
deferred exception will come back when and if this bit is cleared: until then you can see that it happened by looking
at the "pending" bits shown in Figure 8-3 below.

EJTAGver: read-only - tells you which revision of the specification this implementation conforms to. On the 34K core
it reads 3 for version 3.1. The full set of legal values are:

DExcCode: Cause of any non-debug exception you just handled from within debug mode - following first entry to
debug mode, this field is undefined. The value will be one of those defined for Cause[ExcCode], as shown in Section
C.3, "Exception Code values in Cause[ExcCode]".

NoSSt: read-only - reads 0 because single-step is implemented (it always is on MIPS Technologies cores).

SSt: set 1 to enable single-step.

OffLine: prevents a TC from running any instructions (except in debug mode, but then debug mode overrides all soft-
ware inhibitions on thread scheduling). It’s there for debuggers which may need to selectively stop some threads, and
should not be used by application or OS code. This bit has to be replicated per-TC.

Figure 8-1 Fields in the EJTAG CP0 Debug register
31 30 29 28 27 26 25 24 21 20 19 18 17 15 14 10 9 8 7 6 5 0
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Figure 8-2 Exception cause bits in the debug register
31 20 19 18 17 6 5 4 3 2 1 0

Debug DDBSImpr DDBLImpr DINT DIB DDBS DDBL DBp DSS
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DDBSImpr: imprecise store breakpoint - see Section 8.1.11, "Imprecise debug breaks" below. DEPC probably points to
an instruction some time later in sequence than the store which triggered the breakpoint. The debugger or user (or
both) have to cope as best they can.

DDBLImpr: imprecise load breakpoint. (See note on imprecise store breakpoint, above).

DINT: debug interrupt: either the DINT signal got asserted or the probe wrote EJTAG_CONTROL[EjtagBrk] through
the JTAG signals.

DIB: instruction breakpoint. If DBp is clear, that must have been from an sddbp.

DDBS: precise store breakpoint.

DDBL: precise load breakpoint.

DBp: any sort of match with a hardware breakpoint.

DSS: single-step exception.

These note exceptions caused by instructions run in debug mode, but which have not happened yet because they are
imprecise and Debug[IEXI] is set. They remain set until Debug[IEXI] is cleared explicitly or implicitly by a deret,
when the exception is delivered and the pending bit cleared:

IBusEP: bus error on instruction fetch pending. This exception is precise on the 34K core, so this can’t happen and the
field is always zero.

MCheckP: machine check pending (usually an illegal TLB update). As above, the machine check is always precise on
the 34K core, so this is always zero.

CacheEP: cache parity error pending.

DBusEP: bus error on data access pending.

8.1.7 The DCR (debug control) memory-mapped register

This is the only memory-mapped EJTAG register apart from the hardware breakpoints (described in the next section).
It’s found in “drseg” at location 0xFF30.0000 as shown in Table 8.2 (but only accessible if the CPU is in debug
mode). The fields are in Figure 8-4:

Where:

ENM: (read only) reports CPU endianness (1 == big).

DB/IB: (read only) 1 if data/instruction hardware breakpoints are available, respectively. The 34K core has either 0 or 2
data breakpoints, and either 0 or 4 instruction breakpoints.

PCS, PCR: PCS reads 1 if the PC sampling feature is available, as it can be on the 34K core. Then PCR is a three-bit
field defining the sampling frequency as one sample every 2(5+PCR) cycles. See Section 8.1.12, "PC Sampling with
EJTAG" for details.

Figure 8-3 Debug register - exception-pending flags
31 25 24 23 22 21 20 0

Debug IBusEP MCheckP CacheEP DBusEP

Figure 8-4 Fields in the memory-mapped DCR (debug control) register
31 30 29 28 18 17 16 15 10 9 8 6 5 4 3 2 1 0

0 ENM 0 DB IB 0 PCS PCR 0 INTE NMIE NMIP SRE PE
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INTE/NMIE: set DCR[INTE] zero to disable interrupts in non-debug mode (it’s a separate bit from the various non-
debug-mode visible interrupt enables). The idea is that the debugger might want to step through kernel code or run
kernel subroutines (perhaps to discover OS-related information) without losing control because interrupts start up
again.

DCR[NMIE] masks non-maskable interrupt in non-debug mode (a nice paradox). Both bits are "1" from reset.

NMIP: (read-only) tells you that a non-maskable interrupt is pending, and will happen when you leave debug mode (and
according to DCR[NMIE] as above).

SRE: if implemented, write zero to mask soft-reset causes. This signal has no effect inside the 34K core but is
presented at the interface, where customer reset logic could be influenced by it.

PE: (read only) software-readable version of the probe-controlled enable bit EJTAG_CONTROL[ProbEn], which you
could look at in Figure 8-6.

8.1.8 JTAG-accessible registers

We’re wandering away from what is relevant to software here: this register is available for read and write only by the
probe, and is not software-accessible.

But you can’t really understand the EJTAG unit without knowing what dials, knobs and switches are available to the
probe, so it seems easier to give a little too much information.

First of all there are two informational fields provided to the probe, IDCODE (just reflects some inputs brought in to
the core by the SoC team, not very interesting) and ImpCode (Figure 8-5); then there’s the main CPU interaction con-
trol/status register EJTAG_CONTROL (Figure 8-6).

Notes on the ImpCode fields:

EJTAGver: same value (and meaning) as the Debug[EJTAGver] field, see the notes on Figure 7-2.

DINTsup: whether JTAG-connected probe has a DINT signal to interrupt the CPU. Configured by your SoC designer
(who should know) by hard-wiring the core interface signal EJ_DINTsup.

The probe can always interrupt the CPU by a JTAG command using the EJTAG_CONTROL[EjtagBrk], but DINT is
much faster, which is useful if you’re cross-triggering one piece of hardware from another. However, it is fed to both
VPEs at once, and it’s unpredictable which of them will take the resulting debug exception (only one can).

ASIDsize: usually 2 (indicating the 8-bit EntryHi[ASID] field size required by the MIPS32 standard), but can be 0 if
your core has been built with the no-TLB option (i.e. a fixed-mapping MMU).

MIPS16: 1 because the 34K core always supports the MIPS16 instruction set extension.

NoDMA: 1 - MIPS Technologies cores do not provide EJTAG "DMA" (which would allow a probe to directly read and
write anything attached to the 34K core’s OCP interface).

MIPS32/64: the zero indicates this is a 32-bit CPU.

Rocc: "reset occurred" - reads 1 while a reset signal is applied to the CPU - and then the 1 value persists until
overwritten with a zero from the JTAG side. Until the probe reads this as zero most of the other fields are nonsense.

Figure 8-5 Fields in the JTAG-accessible ImpCode register
31 29 28 25 24 23 21 20 17 16 15 14 13 1 0
EJTAGver 0 DINTsup ASIDsize 0 MIPS16 0 NoDMA 0 MIPS32/64
2 = 2.6 see note see note 1 1 0
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The EJTAG_CONTROL register is shown in Figure 8-6:

Notes on the fields:

Psz: (read-only) when software reads or writes "dmseg" this tells the probe whether it was a word, byte or whatever-
size transfer:

Doze/Halt: (read-only) indicates CPU not fully awake. Doze reflects any reduced-power mode, whereas Halt is set
only if the CPU is asleep after a wait or similar.

PerRst: write to set the EJ_PerRst output signal from the core, which can be used to reset non-core logic (ask your
SoC designer whether it’s connected to anything).

For this and all other fields which change core state, we recommend that the probe should write the field and then poll
for the change to be reflected in this register, which may take a short while. In some cases the bit is just an output one,
when the readback will be pointless (but harmless).

PRnW/PrAcc: PrAcc is 1 when the CPU is doing a read/write of the "dmseg" region, and the probe should service it.
The "slow" read/write protocol involves the probe flipping this bit back to zero to tell the CPU the transfer is ready.

While PrAcc is active the read-only PRnW bit distinguishes writes (1) from reads (0).

PrRst: controls the EJ_PrRst signal from the core, which may be wired back to reset the CPU and related logic. Write
a 1 to reset. If it works, the probe will eventually see the bit fall back to 0 by itself, as the CPU resets. Most probes
are wired up with a direct CPU reset signal, which is more reliable.

ProbEn, ProbTrap, EjtagBrk: ProbEn must be set before CPU accesses to "dmseg" will be sent to the probe. It can be
written by the probe directly. ProbTrap relocates the debug exception entry point from 0xBFC0.0480 (when 0) to the
"dmseg" location 0xFF20.0200 - required when the debug exception handler itself is supplied by the probe.

EjtagBrk can be written 1 to "interrupt" the CPU into debug mode.

The three come together into a trick to support systems wanting to boot from EJTAG. The value of all these three bits
is preset by the "EJTAGBOOT" JTAG instruction. When the CPU resets with all of these set to 1, then the CPU will
immediately enter debug mode and start reading instructions from the probe.

DM: (read-only) indicates the CPU is in debug mode, a probe-readable version of Debug[DM].

Figure 8-6 Fields in the JTAG-accessible EJTAG_CONTROL register
31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0
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EJTAG_ADDRESS[1-0] EJTAG_CONTROL[Psz]

¥ 0 Byte
00 1 Halfword
10

00 2 Word
00 3 Tri-byte (lowest address 3 bytes)
01 Tri-byte (highest address 3 bytes)
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8.1.9 EJTAG breakpoint registers

It’s optional whether the 34K core has EJTAG breakpoint registers. But if it has instruction breakpoints, it has four of
them; and if it has data breakpoints, it has two. The breakpoints:

• Work only on virtual addresses, not physical addresses. However, you can restrict the breakpoint to a single
address space by specifying an "ASID" value to match. Debuggers will need the co-operation of the OS to get
this right.

• Use a bit-wise address mask to permit a degree of fuzzy matching.

• On the data side, you can break only when a particular value is loaded or stored. However, such breakpoints are
imprecise in a CPU like the 34K core - see Section 8.1.11, "Imprecise debug breaks" below.

There are instruction-side and data-side breakpoint status registers (they’re located in “drseg”, accessible only when
in debug mode, and their addresses are in Section 8.2, "EJTAG debug memory region map ("dseg")".) They’re called
IBS and DBS. The latter has, in theory, two extra fields (bits 29-28) used to flag implementations which can’t do a
load/store break conditional on the data value. However, MIPS cores with hardware breakpoints always include the
value check, so these bits read zero anyway. So the registers are as shown in Figure 8-7.

Where:

ASIDsup: is 1 if the breakpoints can use ASID matching to distinguish addresses from different address spaces; on the
34K core that’s available if and only if a TLB is fitted.

BCN: the number of hardware breakpoints available (two data, four instructions).

BS1-0, BSD3-0: bitfields showing breakpoints which have been matched. Debug software has to clear down a bit after
a breakpoint is detected.

Then each EJTAG hardware breakpoint ("n" is 0-3 to select a particular breakpoint) is set up through 4-6 separate reg-
isters:

• IBCn, DBCn: breakpoint control register shown at Figure 7-9 below;

• IBAn, DBAn: breakpoint address;

• IBAMm, DBAMn: bitwise mask for breakpoint address comparison. A "1" in the mask marks an address bit which
will be excluded from comparison, so set this zero for exact matching.

Ingeniously, IBAMm[0] corresponds to the slightly-bogus instruction address bit zero used to track whether the
CPU is running MIPS16 instructions, and allows you to determine whether an EJTAG I-breakpoint may apply
only in MIPS16 (or non-MIPS16) mode.

• IBASIDn, DBASIDn specifies an 8-bit ASID, which may be compared against the current EntryHi[ASID] field to
filter breakpoints so that they only happen to a program in the right "address space". The ASID check can be

Figure 8-7 Fields in the IBS/DBS (EJTAG breakpoint status) registers
31 30 29 28 27 24 23 4 3 2 1 0

 DBS 0 ASID-
sup

0 BCN = 2 0 BS1-
0

 IBS BCN = 4 0 BSD3-0
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enabled or disabled using IBCn[ASIDuse] or DBCn[ASIDuse] respectively - see Figure 7-9 and its notes below. ID
(so that the break will only affect one Linux process, for example).

The higher 24 bits of each of these registers is always zero.

• DBVn, DBVHin the value to be matched on load/store breakpoints. DBCHin defines bits 63-32 to be matched for

64-bit load/stores: the 32-bit1 34K has 64-bit load/store instructions for floating point.

Note that you can disable data matching (to get an address-only data breakpoint) by setting the value byte-lane
comparison mask DBCn[BLM] to all 1s.

So now let’s look at the control registers in Figure 8-8.

The fields are:

ASIDuse: set 1 to compare the ASID as well as the address.

BAI7-0: "byte (lane) access ignore"2 - which sounds mysterious. But this is really an address filter.

When you set a data breakpoint, you probably want to break on any access to the data of interest. You don’t usually
want to make the break conditional on whether the access is done with a load byte, load word, or even load-word-left:
but the obvious way of setting up the address match for a breakpoint has that effect.

To make sure you catch any access to a location, you can use the address mask to disable sub-doubleword address
matching and then use DBCn[BAI] to mark the bytes of interest inside the doubleword: well, except that zero bits mark
the bytes of interest, and 1 bits mark the bytes to ignore (hence the mnemonic).

The DBCn[BAI] bits are numbered by the byte-lane within the 64-bit on-chip data bus; so be careful, the relationship
between the byte address of a datum and its byte lane is endianness-sensitive.

NoSB, NoLB: set 0 to enable3 breakpoint on store/load respectively.

BLM7-0: a per-byte mask for data comparison. A zero bit means compare this byte, a 1 bit means to ignore its value.
Set this field all-ones to disable the data match.

TE: set 1 to use as trigger for "PDtrace" instruction tracing as described in Section 8.2, "PDtrace™ instruction trace
facility" below.

BE: set 1 to activate breakpoint. This fields resets to zero, to avoid spurious breakpoints caused by random register
settings: don’t forget to set it!

1. A JTAG hardware breakpoint for a real 64-bit CPU would have 64-bit DBVn registers, so wouldn’t need DBVHin.

Figure 8-8 Fields in the hardware breakpoint control registers (IBCn, DBCn)
31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

DBCn 0 ASIDuse 0 BAI7-0 NoSB NoLB 0 BLM7-0 0 TE 0 BE

31 24 23 22 3 2 1 0

IBCn 0 ASIDuse 0 TE 0 BE

2. Why are there 8 bytes, when the 34K core is a 32-bit CPU with only 32-bit general purpose registers? Well, the DBCn[BAI]
and DBCn[BLM] fields each have a bit for each byte-lane across the data bus, and the 34K core has a 64-bit data bus (and in
fact can do 64-bit load and store operations, for example for floating point values).

3. “1-to-enable” would feel more logical. The advantage of using 0-to-enable here is that the zero value means “break on either
read or write”, which is a better default than “never break at all”.
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8.1.10 Understanding breakpoint conditions

There are a lot of different fields and settings which are involved in determining when a hardware breakpoint detects
its condition and causes an exception.

In all cases, there will be no break if you’re in debug mode already... but then for a break to happen:

• For all breakpoints including instructions: all the following must be true:

1. The breakpoint control register enable bit IBAn[BE]/DBAn[BE] is set.

2. the address generated by the program for instruction fetch, load or store matches those bits of the break-
point’s address register IBAn/DBAn for which the corresponding address-mask register bits in IBAn/DBAn
are zero.

3. either IBCn[ASIDuse]/DBCn[ASIDuse] is zero (so we don’t care what address space we’re matching against),
OR the address-space ID of the running program, i.e. EntryHi[ASID], is equal to the value in IBASIDn/
DBASIDn.

That’s all for instruction breakpoints, but for data-side breakpoints also:

• Data compare break conditions (not value related): both the following must be true:

4. It’s a load and DBCn[NoLB] is zero, or it’s a store and DBCn[NoSB] is zero.

5. The load or the store touches at least one byte-within-doubleword for which the corresponding DBCn[BAI]
bit is zero.

If you didn’t want to compare the load/store value then DBCn[BLM] will be all-ones, and you’re done. But if you
also want to consider the value:

• Data value compare break conditions:

6. the data loaded or stored, as it would appear on the system bus, matches the 64-bit contents of DBVHin with
DBVn in each of those 8-bit groups for which the corresponding bit in DBCn[BLM] is zero.

That’s it.

8.1.11 Imprecise debug breaks

Instruction breakpoints, and data breakpoints filtering only on address conditions are precise; that means that:

1. DEPC will point at the fetched or load/store instruction itself (except if it’s in a branch delay slot, will point at the
branch instruction);

2. The instruction will not have caused any side effects; in particular, the load/store will not reach the cache or
memory.

Most exceptions in MIPS architecture CPUs are precise. But because of the way the 34K core optimizes loads and
stores by permitting the CPU to run on at least until it needs to use the data from a load, data breakpoints which filter
on the data value are imprecise. The debug exception will happen to whatever instruction (typically later in the
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instruction stream) is running when the hardware detects the match, and not necessarily to the same TC. The debug-
ging software must cope.

8.1.12 PC Sampling with EJTAG

A valuable trick available with recent revisions of the EJTAG specification and probes, "PC sampling" provides a
non-intrusive way to collect statistical information about the activity of a running system. You can tell whether PC
sampling is enabled by looking at DCR[PCS], as shown in Figure 7-5 above.

The hardware snapshots the "current PC" (and the TC number of that instruction) periodically, and stores that value
where it can be retrieved by a debug probe. It’s then up to software to construct a histogram of samples over a period
of time, which (statistically) allows a programmer to see where the CPU has spent most cycles. Not only is this use-
ful, but it’s also familiar: systems have used intrusive interrupt-based PC-sampling for many years, so there are tools
which can readily interpret this sort of data.

When PC sampling is configured in to your core, it runs continuously. It doesn’t even stop when the CPU is hanging
on a wait instruction (time spent waiting is still time you might want to measure). You can choose to sample as often

as once per 32 cycles or as rarely as once per 4096 cycles1; at every sampling point the address of the instruction
completing in that cycle (or if none completes, the address of the next instruction to complete) is deposited in a
JTAG-accessible register. Sampling rate is controlled by the DCR[PCR] field of the debug control register shown in
Figure 7-5.

The hardware stores not only 32 bits of the instruction address, but also the then-current ASID (so you can interpret
the virtual PC) and an always-written-1 "new" bit which a probe can use to avoid double-counting the same sample.

8.2 PDtrace™ instruction trace facility

An instruction trace is a set of data generated when a program runs which allows you to recreate the sequence of
instructions executed, possibly with additional information included about data values. Instruction traces rapidly
become enormous, and are typically generated in some kind of abbreviated form, which may be reconstructed by
software which is in possession of a copy of the binary code of your system.

34K family cores can be configured with PDtrace logic, which provides a non-intrusive way of finding out what
instructions your CPU ran. If your system includes PDtrace logic, Config3[TL] will read 1.

With a very high-speed CPU like the 34K core this is challenging, because you need to send data so fast. The PDtrace
system deals with this by:

• Compressing the trace: a software tool in possession of the binary of your program can predict where execution
will go next, following sequential instructions and fixed branches. To trace your program it needs only to know
whether conditional branches were taken, and the destination of computed branches like jump-register.

• Switching the trace on and off: the 34K core can be configured with up to 8 “trace triggers”, allowing you to start
and stop tracing based on EJTAG breakpoint matches: see Section 8.1.9, "EJTAG breakpoint registers" above
and Table 8-14 below.

• High-speed connection to a debug/trace probe: optional. But if fitted, it uses advanced signalling techniques to
get trace data from the CPU core, out of dedicated package pins to a probe. Good probes have generous amounts
of high-speed memory to store long traces.

1. Since it runs continuously, it’s a good thing that from reset the sampling period defaults to its maximum.
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TraceControl2[ValidModes,TBI,TBU] (described below at Figure 7-10 and following) tell you whether you have
such a connection available on your core. You’ll have to ask the hardware engineers whether they brought out the
connector, of course.

• Very high-speed on-chip trace memory: if fitted, you may find between 256bytes and 8Mbytes of trace memory
in your system (larger than a few Kbytes is unlikely). Again, see TraceControl2[ValidModes,TBI,TBU] to find out
what facilities you have.

• Option to slow the CPU to match the tracing speed: when you really, really need a full trace, and are prepared to
slow down your program if necessary to wait while the trace information is sent to the probe. This is controlled
by TraceControl[IO], see below.

In practice the PDtrace logic depends on the existence of an EJTAG unit (described in the previous section) and an
enhanced EJTAG probe. To benefit from on-probe trace memory, the probe will need to attach to PDtrace-specific
signals.

This manual describes only the lowest-level building blocks as visible to software. For real hardware information
refer to [PDTRACETCB]; for guidance about how to use the PDtrace facilities for software development see
[PDTRACEUSAGE]. To use PDtrace facilities, you’ll have to read the software manuals which come with a probe.

8.2.1 34K core-specific fields in PDtrace™ JTAG-accessible registers

The PDtrace system is controlled by the JTAG-accessible registers TCBCONTROLA and TCBCONTROLB. They
are not visible to software running on the CPU, but we’ll document fields and configured values which are specific to
34K family CPUs.

Figure 8-9 Fields in the TCBCONTROLA register

In TCBCONTROLA:

VModes: reads “1 0”, showing that 34K family cores support all tracing modes.

ADW: reads “1” to indicate that we support the wide (32-bit) internal trace bus.

Figure 8-10 Fields in the TCBCONTROLB register

In TCBCONTROLB:

TWSrcWidth:  "0 1", which indicates that  a 2-bit “source” field is included in the trace word to identify the VPE
running the instruction, just as a multicore system would identify the CPU.

TWSrcVal: becomes writable, so the probe can set this value to a distinguishable one for each VPE."

Figure 8-11 Fields in the TCBCONTROLC register

TCBCONTROLC contains new fields for multi-threading trace support, as described in [PDTRACETCB].

31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

0 VModes
1 0

ADW SyP TD IO D E S K U ASID G TFCR TLSM TIM On

31 30 28 27 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 RM TR BF TM TLSIF CR Cal TWSrcVal CA OfC EN

31 28 27 23 22 21 14 13 12 5 4 2 1 0

0 Mode CPUvalid CPUId TCvalid TCnum TCbits MTtraceType MTtraceTC
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MTtraceTC: can be set to 1 to include the TC ID in trace data.  Powers up as zero.

Figure 8-12 Fields in the TCBCONFIG register

In TCBCONFIG:

CF1:  read-only, reads zero because there are no more TCB configuration registers.

PiN: read-only, reads zero because the 34K core is a single-issue (single pipeline) processor.

REV: reads 1, denoting compliance with revision 4.xx of the TCB specification.

8.2.2 CP0 registers for the PDtrace™ logic

There are four:

• TraceControl and TraceControl2: allow the software to take charge of what is being traced.

• UserTraceData: allows software to send a “user format” trace record, which can be interpreted by suitable trace
analysis software to build interesting facilities.

• TraceBPC: controls whether and how individual EJTAG breakpoint trace triggers take effect.

TS: set 1 to put software (manipulating this register) in control of tracing. Zero from reset.

UT: software can output a "user triggered record" (just write any 32-bit value to the UserTraceData register). There
have been two types of user-triggered record, and this bit says which to output: 0 → Type 1 record, 1 → Type 2.

TPC: turns on PC Sampling, where the current PC value is periodically sent to the trace memory (a different feature
from the EJTAG “PC Sampling” feature described above Section 8.1.12, "PC Sampling with EJTAG".)

TB: "trace all branch" - when 1, output all branch addresses in full. Normally, predictable branches need not be sent.

IO: "inhibit overflow" - slow the CPU rather than lose trace data because you can’t capture it fast enough.

D, E, K, S, U: do trace in various CPU modes: separate bits independently filter for debug, exception, kernel, supervisor
and user mode. Set 1 to trace.

ASID_M, ASID, G: controls ability to trace for just one (or some) processes, recognized by their current ASID value as
found in EntryHi[ASID]. Set the G ("global") to trace instructions from all and any ASIDs. Otherwise set
TraceControl[ASID] to the value you want to trace and ASID_M to all 1s (you can also use ASID_M as a bit mask to
select several ASID values at once).

TFCR: switch on to generate full PC addresses for all function call and return instructions.

TLSM: switch on to trace all D-cache misses (potentially including the miss address).

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Figure 8-13 Fields in the TraceControl and TraceControl2 registers
31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TraceControl TS UT 0 TPC TB IO D E K S U ASID_M ASID G TFCR TLSM TIM O
n

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2 0

TraceControl2 0 CPU-
Idv

CPUId TCV TCNum Mode Valid-
Modes

TBI TBU SyP
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TIM: switch on to trace all I-cache misses.

On: master trace on/off switch - set 0 to do no tracing at all.

The read-only fields in TraceControl2 provide information about the capabilities of your PDtrace system. That system
may include a plug-in probe, and in that case the TraceControl2[SyP] field may read as garbage until the probe is
plugged in.

The first four fields are for tracing code running on MT CPUs:

CPUIdV, CPUId: when CPUIdV is set, trace data will only be generated by code run by the VPE identified in CPUId.
Ignored if TCV is set.

TCV, TCNum: when TCV is set, trace only instructions run by the TC whose number is stored in tTCNum.

Mode: whenever trace is turned on, you capture an instruction trace. Mode is a bit mask which determines what load/
store tracing will be done1. It’s coded like this:

However, see TraceControl2[ValidModes] (description below) for what your PDtrace unit is actually capable of doing.
Bad things can happen if you request a trace mode which isn’t available.

TraceControl2[ValidModes]: what is this PDtrace unit capable of tracing?

TraceControl2[TBI,TBU]: best considered together, these read-only bits tell you whether there is an on-chip trace
memory, on-probe trace memory, or both - and which is currently in use.

TraceControl2[SyP]: read-only field which lets you know how often the trace unit sends a complete PC address for
synchronization purposes, counted in CPU pipeline clock cycles. The period is 2(SyP + 5)

8.2.3 JTAG triggers and local control through TraceIBPC/TraceDBPC

Recent revisions of the PDtrace specification have defined much finer controls on tracing. In particular, you can now
trace only cycles matching some “breakpoint” criteria, and there is a two-stage process where cycles are traced only
after an “arm” condition is detected. The new fields are shown in Figure 8-14

Bit No Set What gets traced
0 PC
1 Load addresses
2 Store addresses
3 Load data
4 Store data

1. Prior to v4 of the PDtrace specification, this field was in TraceControl, and was too small to allow all conditions to be speci-
fied independently.

ValidModes What can we trace?
00 PC trace only
01 Can trace load/store addresses
10 Can trace load/store addresses and data

TBI TBU On-chip or probe trace memory?
0 0 only on-chip memory available
0 1 only probe memory available
1 0 Both available, currently using on-chip
1 1 Both available, currently using probe
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In either TraceIBPC or TraceDBPC:

IE,DE: master 1-to-enable bit for triggers from EJTAG instruction and data breakpoints respectively.

ATE: Read-only bit which lets you know whether the additional trigger controls such as ARM, DISARM, and data-
qualified tracing (introduced in v4.00 of the PDtrace specification) are available - which they may be on the 34K
core.

IBPC8-0, DBPC8-0: each three-bit field encodes tracing options independently, for up to nine EJTAG I- and D-side
breakpoints (this is generous: your 34K core will typically have no more than 4 I- and 2 D-breakpoints).

Each entry can be set as follows:

However, do TraceIBPC/TraceDBPC exist in your system? They will be there only if you have an EJTAG unit (does
Config1[EP] read 1?), and that unit has at least one breakpoint register - check that at least one of DCR[DB,IB] is set
(as described in).

8.2.4 UserTraceData reg

Write any 32-bit value you like here and the trace unit will send a "user" record (there are two "types" of user record,
and which you output depends on TraceControl[UT], see above). You need to send something your trace analysis sys-
tem will understand, of course! Perhaps it’s worth noting that this “user” is local debug software, and doesn’t mean
low-privilege software running in “user mode” - which of course would not be able to access this register.

8.2.5 Summary of when trace happens

The many different enable bits which control trace add up to (or strictly "and" up to) a whole bunch of reasons why
you won’t get any trace output. So it may be worth summarizing them here. So:

Figure 8-14 Fields in the TraceIBPC/TraceDBPC registers
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

TraceIBPC 0 0 IE ATE IBPC3 IBPC2 IBPC1 IBPC0

TraceDBPC DE DBPC1 DBPC0

xBPC field Description
0 Stop tracing (no effect if off already).
1 Start tracing (no effect if on already).
2 Trace instructions which cause this trigger.
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• If software is in charge (that is, if TraceControl[TS]==1) then:

– TraceControl[On] must be set.

– At least one of the CPU mode filter bits TraceControl[D,E,S,K,U] must be set 1 to trace instructions in debug,
exception, supervisor, kernel or user-mode respectively. Mostly likely either just TraceControl[U] will be set (to
follow just one process in a protected OS), or TraceControl[E,S,K,U] to follow all the software at bare-iron
level (but not to trace EJTAG debug activity);

– Either TraceControl[G] is set (to trace everything regardless of current ASID) or TraceControl[ASID] (as
masked by TraceControl[ASID_M]) matches the current value of the core-under-test’s EntryHi[ASID] field.

– The signal PDI_TraceOn is asserted by the trace block. This will typically be true whenever the probe is
plugged in and connected to software.

– As above there are D,E,S,K,U,G and ASID bits (there isn’t an "ASID_M" in this case) which must be set
appropriately in the JTAG-accessible TCBCONTROLA register, which is not otherwise described here.

Whether JTAG or TraceControl is in charge, then:

• There must have been a cycle recently when there was an "on trigger", that is:

– The CPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set to request a trace trigger (for I-side
and D-side respectively);

– TraceIBPC[IE]/TraceDBPC[DE] (respectively) was set to enable triggers from EJTAG breakpoints;

– the appropriate TraceBPC[IBPCx]/TraceBPC[DBPCx] field has some kind of "on" trigger - and if this trigger is
conditional on "arm" there must have been an arm event since system reset or any disarm event;

• And since the on-trigger time, there must not have been a cycle which acted as an "off trigger", that is:

– The CPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set, and TraceBPC[IE]/TraceBPC[DE]
(respectively) were still set;

– where the appropriate TraceIBPC[IBPCn]/TraceDBPC[DBPCn] fields is set to disable triggering (subject to
arming).

If there is more than one breakpoint match in the same cycle, an "on" trigger wins out over any number of "off".

8.3 CP0 Watchpoints

Some cores may be built with no EJTAG debug unit to save space, and some debug software may not know how to
use EJTAG resources. So it may be worth configuring some of the non-EJTAG CP0 watchpoint registers. If so they’re
described in Appendix C, “Watchpoint registers” on page 151 below.

8.4 Performance counters

Performance counters are provided to allow software to monitor the occurrence of events of interest within the core,
and can be very useful in analyzing system performance.
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34K family CPUs are fitted with four counters, each of which can be set up to count one of a large choice of different
events. Unlike almost all the other CP0 registers, the performance counters are not replicated per-VPE: the CPU has
four counters, which either VPE may use. Each 32-bit counter is accompanied by a control register whose layout is
shown in Figure 8-15.

34K is a multi-threading CPU, and you can optionally count only events associated with a particular thread (by its TC
number), or even those events associated with threads affiliated to a particular VPE. After some thought, I haven’t
documented in detail when you might get a different count if you narrow to a particular VPE or TC. In most cases it’s
obvious whether it makes sense to count a particular event for just one TC or VPE: where it’s not obvious, experi-
ment.

There are usually four counters, but software should check using the PerfCtl[M] bit (which indicates "at least one
more").

Then the fields are:

TCID: the TC number of the thread whose events should be counted, if just-one-TC counting is enabled (i.e.
MT_EN==10 binary.)

MT_EN: available to restrict counting to events which are attributable to a particular VPE or TC:

VPEID: defines the VPE all of whose TC’s events should be counted, if just-this-VPE counting is enabled (i.e.
MT_EN==01 binary.)

Event: determines which event this counter will count; see Table 8.3 below. Note that the odd-numbered and even-
numbered counters mostly count different events, though some particularly important events can use any of the four
counters.

IE: set to cause an interrupt when the counter "overflows" into its bit 31. This can either be used to implement an
extended count, or (by presetting the counter appropriately) to notify software after a certain number of events have
happened.   The interrupt is implemented by taking a set of signals (usually SI_PCI - one per VPE) out of the core,
which the system integrator will have sent back in, each as one of the core’s interrupt inputs. The output signal
activated will depend on the VPE affiliation of the thread which last wrote to the control register, which will
normally be what you want.

U, S, K, EXL: count events in User mode, Supervisor mode, Kernel mode and Exception mode (i.e. when Status[EXL] is
set) respectively. Set multiple bits to count in all cases.

The events which can be counted in the 34K core are in Table 8.3. Blank fields are reserved. But before you get there,
take a look at the next sub-section...

Figure 8-15 Fields in the PerfCtl register
31 30 29 22 21 20 19 16 15 12 11 5 4 3 2 1 0
M 0 TCID MT_EN VPEID 0 Event IE U S K EXL

MT_EN What gets counted?
value
00 Events from all TCs & VPEs (i.e., don’t filter)
01 Count events from all TCs affiliated to the VPE specified in the

VPEID field. Some events can’t be tied to a particular VPE - use
common sense.

10 Count events only for the TC specified by the TCID field. Again,
some events are not TC-specific.

11 Reserved
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8.4.1 Reading the event table.

There are a lot of events you can count. It’s relatively cheap to wire another signal from the internals of the core into
a counter. It’s time consuming and expensive to formulate a signal which represents exactly what a software engineer
might want to count, and even more expensive to test it. Where the definitions in Table 8.3 are clear and simple,
they’re usually exactly right. Where they seem more obscure, tread carefully, and don’t just blame the author of this
manual (though sometimes it is my fault!) When you use a counter, use it first on a piece of code where you know the
answer, and check you’re really counting what you think you are.

When reading the table:

• T, V, P: in the “Type” column, mark an event which can be filtered per-TC, per-VPE or is just global (respec-
tively). Per-TC events can be counted per-VPE, and per-VPE events can be counted globally. When you count
per-TC events per-VPE or globally the counter will advance in any cycle where the event happens for any TC
under consideration. Counters never advance faster than once per clock.

• IFU: is the “instruction fetch unit” of the CPU pipeline. We can’t describe some events without referring to the
inside of the CPU. You might like to look back at Section 3.1 “The 34K™ core pipeline and multithreading”.

• Replay: when an instruction will block for a long period, sequentially-later instructions from the same TC which
have got into the main pipeline must be discarded. These instructions will usually have been retained in the “skid
buffer” of the IFU, so the IFU queues can be adjusted so that when the instruction unblocks, the TC can continue
correctly from the following instruction. This sequence is called a “replay” and these events count the pipeline
bubbles which result.

• Refetch: if you'd like to do a replay but the relevant instructions are not available in the skid buffer, the IFU must
be instructed to discard all stored instructions for the TC and fetch them again. This event counts the number of
pipeline bubbles which result.

• Stall: in general, “stall” counters count the cycles when the whole pipeline is blocked and no TC can make for-
ward progress. If this type of counter is set for a particular TC, it will only count if this TC is causing the stall.

But subunits causing a stall can also signal a “long stall”, and the main pipeline takes that as a cue to deschedule
the blocked TC until the condition is resolved. The counters documented as “stall” or “stalled” do not count time
while one TC is blocked but others continue to run.

• Blocked cycle: “events” like this count all and any cycles when a TC is blocked by something.

• LDQ, FSB, WBB: CPU queues, described in Section 6.3.1, "Read/write ordering and queues in the 34K core".

• Instruction fetch events: these include I-cache, ITLB and JTLB events. They are not as directly related to the
instructions in your program as you might think:

• 24K/34K CPUs have a 64-bit wide interface to the I-cache and fetch two instructions at once.

• After a cache miss is resolved, the IFU re-fetches the missed data; the counters will count this twice.

• The IFU always reads instructions ahead, and on a branch or exception some of the instructions fetched will
never be executed. Moreover, the IFU's branch predictors sometimes cause it to fetch speculatively from a
predicted branch target which turns out to be wrong: those speculative instructions will never be executed
either.

• If there's an exception-causing address error during I-fetch, it won't be counted.
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• Single-threaded mode (ST mode): when only one TC is eligible for scheduling, 34K enters ST mode. In ST mode
some blocking events which would have been dealt with by suspending the thread and possibly replaying an
instruction are handled by a whole-pipeline stall instead, which has less overhead.

Table 8.3 Performance counter events

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type

 0  Cycles P

 1  Instructions completed T

 2 Branch instructions completed. T Branch mispredictions T

 3 jr $31 (return) instructions T jr $31 predicted but guessed wrong T

 4 jr (not $31) instructions T jr $31 not predicted (the return predictor
only works for one TC at a time).

T

 5 ITLB accesses. There will be one for every I-
fetch in a translated address region.

T ITLB misses. Note that if two TCs cause “the
same” ITLB miss in quick succession, that will
only be counted once.

T

 6 DTLB accesses. T DTLB misses T

 7 JTLB instruction accesses (same as ITLB
misses).

T JTLB I-misses: this counts TLB misses and
TLB invalid conditions on I-fetch.

T

 8 JTLB data accesses (same as DTLB misses) T JTLB D-miss: counts TLB misses + TLB
invalid on D-access.

T

 9 Instruction cache accesses. That's every access
including replays (and as above, including
instructions which are never executed). But
more: for example, following a branch which is
correctly predicted taken, one or more instruc-
tions on the straight-through path may be
accessed.

T Instruction cache misses. Includes misses result-
ing from fetch-ahead and speculation.

T

 10 Data cache load/stores T D-cache writebacks (actually counts number of
D-misses or cacheops which trigger writeback.)

T

 11 Loads/stores which miss in D-cache T

12-13 reserved

 14 Integer instructions completed T FPU instructions completed (not including loads
and stores)

T

 15 Loads completed (including FP loads) T Stores completed (includes FP stores) T

 16 j/jal instructions completed T MIPS16 instructions completed T

 17 no-ops completed. Early revision cores count
only strict nop instructions, but later ones
count any 3-operand instruction which discards
its output by writing register $0.

T Integer multiply/divide unit instructions com-
pleted

T

 18 Cycles where the main pipeline (RF stage) does
not advance. This is either because there is no
instruction scheduled, or because the ALU is
backed up and can't accept an instruction

P Replays: that is, events where IFU is made to re-
issue instructions which were already scheduled
once.

T

 19 sc instructions completed T sc instructions failed T

 20 Prefetch instructions to cached addresses T Prefetch instructions completed with cache hit T

 21 L2 cache writebacks P L2 cache accesses P
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 22 L2 cache misses P

 23 Exceptions taken T Cycles spent in “Single Threaded Mode”. T

 24 Cycles when main pipeline is stalled while the
LSU has to do a “replay”. A good example of a
replay is when the fill buffer gets full and needs
to be emptied out to make forward progress. To
empty out the buffer, the LSU has to take control
of the cache which is currently being accessed
by other in-flight LSU instructions.
To accomplish this, the pipeline is stalled, the
FSB accesses the cache to empty out its data,
and then the instructions that were in flight are
replayed to get their data from the cache.

T “Refetches”: Counts all replayed instructions
(instructions which are send back to IFU to be
refetched (and reissued)). If an instruction has
been replayed multiple times, you get a count
for each event.

T

 25 Cycles when no instructions are available to
issue for any TC

P Cycles when main pipeline stops because an
ALU operation is taking more than one clock

P

 26 DSP Instructions Completed T ALU-DSP Saturations Done T

 27 MDU-DSP Saturations Done T

28-31 Available to count implementation-specific events signalled by wires from configurable interfaces.

 28 Available for customer PM event T Available for customer CP2 event T

 29 Available for customer ISPRAM event T Available for customer DSPRAM event

 30 Available for CorExtend event T

 31 Available for external yield manager event. T  Custom ITC event T

 32 ITC Loads. If a TC is halted or takes an excep-
tion, a pending ITC operation will be aborted,
then later retried. Each retry is counted.

T ITC Stores issued. Invisible retries counted too,
as for loads.

T

 33 Uncached Loads T Uncached Stores T

 34 fork Instructions completed T yield instructions completed T

 35 CP2 register-to-register instructions completed T mfc2/mtc2 instructions completed T

36 reserved

37-46 Count number of cycles (most often “stall cycles”, i.e. time lost), not just number of events. See note on stall
cycles above.

 37 I-cache miss blocked cycles - counts cycles
when the TC has no instruction to issue follow-
ing an I-fetch miss. This ignores the stalls due to
ITLB misses as well as the 4 cycles following a
redirect.

T D-cache miss blocked cycles - counts cycles
when TC is blocked when an instruction uses a
register value which is subject to a load miss.

T

38 L2 I-miss stall cycles P L2 data miss stall cycles P

39 D-miss cycles P L2 miss cycles P

40 Uncached access block cycles T ITC stall cycles: when no instruction for any TC
can be issued, and a TC selected for counting is
waiting for an ITC operation

T

 41 MDU stall cycles - note that it's possible for the
MDU to indicate a “long stall” where the TC
waiting for the MDU gets suspended - that wait
will not be counted here.

T FPU stall cycles  T

 42  CP2 stall cycles T CorExtend stall cycles  T

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type
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 43  ISPRAM stall cycles - when no instruction can
be issued because the IFU has run out of instruc-
tions, after the ISPRAM sent a “not ready” indi-
cation (which requires a retry). Doesn't include a
count for the 4 cycles after a redirect.

T DSPRAM stall cycles  T

 44  CACHE instruction stall cycles P

 45  Load to Use stalls T Stalls when a load/store base register was com-
puted by the preceding instruction.

 T

 46  Read-CP0-value interlock stalls. T Branch mispredict: lost cycles resulting from a
mispredict (24K only).

 Pi

 47  Relax bubbles V

 48  IFU FB full refetches: count up when the IFU
has to refetch an address because the FB was
full on a miss.

T FB entry allocated  P

 49  EJTAG Instruction triggers T EJTAG data triggers  T

50-55 Monitor the state of various FIFO queues relating to loads and stores, as described in Section 6.3.1, "Read/
write ordering and queues in the 34K core".

 50 FSB < 1/4 full P FSB 1/4-1/2 full P

 51 FSB > 1/2 full P FSB full pipeline stalls P

 52 LDQ < 1/4 full P LDQ 1/4-1/2 full P

 53 LDQ > 1/2 full P LDQ full pipeline stalls P

 54 WBB < 1/4 full P WBB 1/4-1/2 full P

 55 WBB > 1/2 full P Cycles when whole CPU is stopped because an
instruction needs to write data out of the core,
but all write buffer entries are full.

P

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type
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Programming the 34K™ core in user mode

Sections include:

• Section 9.1, "The multiplier": multiply, multiply/accumulate and divide timings.

• Section 9.2, "User-mode accessible "Hardware registers""

• Section 9.3, "Prefetching data": how it works.

• Section 9.4, "Using “synci” when writing instructions": writing instructions without needing to use privileged
cache management instructions.

• Section 9.5, "Tuning software for the 34K family pipeline": for determined programmers, and for compiler writ-
ers. It includes information about the timing of the DSP ASE instructions.

• Section 9.6 “Floating point instruction timing and data dependencies”: the floating-point unit often runs at half
speed, and some of its interactions (particularly about potential exceptions) are complicated. This section offers
some guidance about the timing issues you’ll encounter.

9.1 The multiplier

As is traditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32
CPUs implement:

• mult/multu: a 32×32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the
multiply unit’s pseudo-registers hi and lo (readable only using the special instructions mfhi and mflo, which
are interlocked and stall until the result is available).

• madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo.

• mul/mulu: simple 3-operand multiply as a single instruction.

• div/divu: divide - the quotient goes into lo and the remainder into hi.

Many of the most powerful instructions in the MIPS DSP ASE are variants of multiply or multiply-accumulate oper-
ations, and are described in Section , "The MIPS32® DSP ASE". The DSP ASE also provides three additional “accu-
mulators” which behave like the hi/lo pair).

No multiply/divide operation ever produces an exception - even divide-by-zero is silent - so compilers typically insert
explicit check code where it’s required.

The 34K core multiplier is high performance and pipelined; multiply/accumulate instructions can run at a rate of 1
per clock, but a 32×32 3-operand multiply takes four clocks longer than a simple ALU operation. Divides use a bit-
per-clock algorithm, which is short-cut for smaller dividends. The result is that many of these operations will not be
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finished in time for the next instruction to proceed without delay. For details see Section 9.5, "Tuning software for the
34K family pipeline", and in particular Section 9.5.4, "Data dependency delays classified".

9.2 User-mode accessible "Hardware registers"

The 34K core complies with Revision 2 of the MIPS32 specification, which introduces hardware registers; CPU-
dependent registers which are readable by unprivileged user space programs, usually to share information which is
worth making accessible to programs without the overhead of a system call.

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rdhwr instruction. [MIPS32] defines four registers so far. The OS can control access to
each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access. Privileged code can access
any hardware register.

The four standard registers are:

• CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

• SYNCI_Step (1): the effective size of an L1 cache line1; this is now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you’ve written visible for execu-
tion. Then SYNCI_Step tells you the "step size" - the address increment between successive synci’s required to
cover all the instructions in a range.

If SYNCI_Step returns zero, that means that you don’t need to use synci at all.

• CC (2): user-mode read-only access to the CP0 Count register, for high-resolution counting. Which wouldn’t be
much good without.

• CCRes (3): which tells you how fast Count counts. It’s a divider from the pipeline clock (if you read a value of
“2”, then Count increments every 2 cycles, at half the pipeline clock rate - which is what you’ll find for any 34K
family core defined so far.

9.3 Prefetching data

MIPS32 CPUs are being increasingly used for computations where you’d once have needed a DSP. These computa-
tions often feature loops accessing large arrays, and the run-time is often dominated by cache misses.

These are excellent candidates for using the pref instruction, which gets data into the cache without affecting the
CPUs other state. In a well-optimized loop with prefetch, data for the next iteration can be fetched into the cache in
parallel with computation for the last iteration.

It’s a pretty major principle that pref should have no software-visible effect other than to make things go faster.

pref is logically a no-op2.

The pref instruction comes with various possible “hints” which allow the program to express its best guess about
the likely fate of the cache line. In 34K family cores the “load” and “store” variants of the hints do the same thing; but

1. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them different.
2. This isn’t quite true any more; pref with the "PrepareForStore" hint can zero out some data which wasn’t previously zero.
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it makes good sense to use the hint which matches your program’s intention - you might one day port it to a CPU
where it makes a difference, and it can’t do any harm.

The 34K core acts on hints as summarized in Table 9.1.

9.4 Using “synci” when writing instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification, [MIPS32]) ensures that
instructions written by a program (necessarily through the D-cache, if you’re running cached) get written back from
the D-cache and corresponding I-cache locations invalidated, so that any future execution at the address will reliably
execute the new instructions. synci takes an address argument, and it takes effect on a whole enclosing cache-line
sized piece of memory. User-level programs can discover the cache line size because it’s available in a “hardware reg-
isters” accessed by rdhwr, as described in Section 9.2, "User-mode accessible "Hardware registers"" above.

9.5 Tuning software for the 34K family pipeline

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code translators.

Note, though, that when there is a multi-threading workload some of the following issues become less important.
There’s not so much need to mitigate cache miss delays (for example) when the time when one thread is waiting will
be cheerfully used by another thread which keeps running.

Table 9.1 Hints for “pref” instructions
Hint What happens in the 34K core Why would you use it?

No Name
0 load Read the cache line into the D-cache if

not present.
When you expect to read the data soon.
Use "store" hint if you also expect to
modify it.

1 store

4 load_streamed Fetch data, but always use cache way
zero - so a large sequence of "streamed"
prefetches will only ever use a quarter of
the cache.

For data you expect to process sequen-
tially, and can afford to discard from the
cache once processed

5 store_streamed

6 load_retained Fetch data, but never use cache way
zero. That means if you do a mixture of
"streamed" and "retained" operations,
they will not displace each other from
the cache.

For data you expect to use more than
once, and which may be subject to com-
petition from "streamed" data.

7 store_retained

25 writeback_invalidate/
nudge

If the line is in the cache, invalidate it
(writing it back first if it was dirty).
Otherwise do nothing.
However (with the 34K core only): if
this line is in a region marked for
“uncached accelerated write” behavior,
then write-back this line.

When you know you’ve finished with
the data, and want to make sure it loses
in any future competition for cache
resources.

30 PrepareForStore If the line is not in the cache, create a
cache line - but instead of reading it
from memory, fill it with zeroes and
mark it as "dirty".
If the line is already in the cache do
nothing - this operation cannot be relied
upon to zero the line.

When you know you will overwrite the
whole line, so reading the old data from
memory is unnecessary.
A recycled line is zero-filled only
because its former contents could have
belonged to a sensitive application -
allowing them to be visible to the new
owner would be a security breach.
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The 34K core is a pipelined design, and the pipeline and some of its consequences are described in Section , "How the
34K™ core implements multi-threading". That leads to a class of possible delays to do with data dependencies. For
software tuning purposes it’s usually enough to know the delay which results when one instruction (the “producer”)
generates a value in some particular register for the use of the next instruction in sequence (the “consumer”). The
delay is in processor cycle time units, but it makes good sense to think of that delay as a lost opportunity to run an
instruction. To tune round data dependencies, the programmer or compiler needs to re-order the instructions so that
enough useful but independent instructions are placed between the producer and consumer that the consumer runs
without delay.

There are times when interactions are more complicated than that. While you can pore over hardware books to try to
figure out what the pipeline is doing, when it gets that difficult we advise that you should obtain a cycle-accurate sim-
ulator or other well-instrumented test environment, and try your software out.

But before getting on to data delays, we’ll look at the most important causes of slow-down: cycles lost to cache
misses and branches.

9.5.1 Cache delays and mitigating their effect

In a typical 34K CPU implementation a cache miss which has to be refilled from DRAM memory (in the very next
chip on the board) will be delayed by a period of time long enough to run 50-100 instructions. A miss or uncached
read (perhaps of a device register) may easily be several times slower. These really are important!

Of course, this is one of the main motivations for having a multithreading CPU: while one thread is stopped because
of a cache miss, other threads can keep running, greatly improving the total throughput.

Because these delays are so large, there’s not a lot you can do to help a cache-missing thread make progress. But
every little helps. The 34K core has non-blocking loads, so if you can move your load instruction producer away from
its consumer, you won’t start paying for your memory delay until you try to run the consuming instruction.

Compilers and programmers find it difficult to move fragments of algorithm backwards like this, so the architecture
also provides prefetch instructions (which fetch designated data into the D-cache, but do nothing else). Because
they’re free of most side-effects it’s easier to issue prefetches early. Any loop which walks predictably through a large
array is a candidate for prefetch.

The pref PrepareForStore prefetch saves a cache refill read, for cache lines which you intend to overwrite in
their entirety. Read more about prefetch in Section 9.3, "Prefetching data" above.

Tuning data-intensive common functions

Bulk operations like bcopy() and bzero() will benefit from some CPU-specific tuning. To get excellent perfor-
mance for in-cache data, it’s only necessary to reorganize the software enough to cover the address-to-store and load-
to-use delays. But to get the loop to achieve the best performance when cache missing, you probably want to use
some prefetches.

9.5.2 Branch delay slot

It’s a feature of the MIPS architecture that it always attempts to execute the instruction immediately following a
branch. The rationale for this is that it’s extremely difficult to fetch the branch target quickly enough to avoid a delay,
so the extra instruction runs "for free"...

Most of the time, the compiler deals well with this single delay slot. MIPS low-level programmers find it odd at first,
but you get used to it!
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9.5.3 Branch misprediction delays

In a long-pipeline design like this, branches would be expensive if you waited until the branch was executed before
fetching any more instructions. See Section 3.1, "The 34K™ core pipeline and multithreading" for what is done about
this: but the upshot is that where the fetch logic can’t compute the target address, or guesses wrong, that’s going to
cost five or more lost cycles - but most of the pain is felt by the thread which executes the branch; so long as there are
other running threads the CPU can keep busy. It does depend what sort of branch: the conditional branch which closes
a tight loop will almost always be predicted correctly after the first time around.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to
keep ahead with its predictions. Where branchy code can be replaced by conditional moves, you’ll get significant
benefits.

The branch-likely1 instructions (officially deprecated by the MIPS32 architecture because they may perform poorly
on more sophisticated or wider-issue hardware) are predicted just like any other branch.

Although deprecated, the branch-likely instructions will probably improve the performance of loops where there is no
other way of avoiding a no-op in a loop-closing branch’s delay slot. If you’re tempted to use this, we strongly recom-
mend you make the code conditional on a #define variable tied specifically to the 34K family. If that’s difficult in
your environment and the code might need to be portable, it’s probably better not to use this.

9.5.4 Data dependency delays classified

We’ve attempted to tabulate all possible producer/consumer delays affecting user-level code (we’re not discussing
CP0 registers here), but excluding floating point (which is in the next section).

In fact, we won’t set out the tables exactly like that. The MIPS instruction set is efficient because, most of the time,
dependent instructions can be run nose-to-tail without delay. For all registers, there is a "standard" place in the pipe-

line where the producer should deliver its value and another place in the pipeline where the consumer picks it up2.
Producer/consumer delays happen when either the producer is late delivering a result to the register (we’ll abbreviate
to "lazy"), or the consumer insists on obtaining its operand early (we’ll abbreviate to "eager"). Of course, both may
happen: in that case the delays add up.

It’s important to be clear what class of registers is involved in any of these delays. For non-floating-point user-level
code, there are just three classes of registers to consider:

• General purpose registers ("GPR");

• The hi/lo pair together with the three additional accumulators defined by the MIP DSP ASE (“ACC”);

• The fields of the DSPControl register.

So that gives us two tables.

Delays caused by "eager consumers" reading values early

1. The "likely" in the instruction name is historical, and pretty misleading.
2. These are brought closer together by the magic of register file bypasses, but we don’t need to get into the details here.
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Delays caused by "lazy producers" delivering values late

How to use the tables

Suppose we’ve got an instruction sequence like this one:

addiu $a0, $a0, 8
lw $t0, 0($a0) # [1]
lw $t1, 4($a0)
addu $t2, $t0, $t1# [2]
mul $v0, $t2, $t3
sw $v0, 0($a1) # [3]

Then a look at the tables should help us discover whether any instructions will be held up. Look at the dependencies
where an instruction is dependent on its predecessor:

Table 9.2 Register → eager consumer delays
Reg → Eager consumer Del Applies when...

GPR → load/store 1 the GPR value is an address operand (store data is
not needed early).

ACC → multiply instructions 1 the ACC value came from any non-multiply or mul-
tiply instructions which saturate the accumulator
value (values generated by other multiply instruc-
tions are made available early, and thus avoid this
delay).

ACC → DSP instructions which extract selected
bits from an accumulator: extp...,
extr... etc.

3 Always

DSP instructions which write a shifted
value back to the accumulator: mthlip,
shilo, shilov.

Table 9.3 Lazy producer → register delays
Lazy producer → Reg Del Applies when...

Load → GPR 1 Always (familiar as the "load delay slot").
Integer multiply unit instructions produc-

ing a GPR result.
→ GPR 4 Always (because the multiply unit pipeline is

longer than the integer unit’s).
Instructions reading accumulators and

writing GPR (e.g. mflo).
DSP "ALU" instructions (which neither
read nor write an accumulator, nor do a

multiplication).

→ GPR 1 Always

Integer divide instruction → ACC 7 8-bit dividend
9 8-bit dividend & negative operand to div

15 16-bit dividend
17 16-bit dividend & negative operand to div
23 24-bit dividend
25 24-bit dividend & negative operand to div
31 full-size dividend
33 full-size dividend & negative operand to div
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[1] The lw will be held up by one clock, because its GPR address operand $a0 was computed by the immediately
preceding instruction (see the first box of Table 9.2.) The second lw will be OK.

[2] The addu will be one clock late, because the load data from the preceding lw arrives late in the GPR $t1 (see the
first box of Table 9.3.)

[3] The sw will be 4 clocks late starting while it waits for a result from the multiply pipe (the second box of Table 9.3.)

These can be additive. In the pointer-chasing sequence:

lw         $t1, 0($t0)
lw         $t2, 0($t1)

The second load will be held up two clocks: one because of the late delivery of load data in $t1 (first box of Table
9.3), plus another because that data is required to form the address (first box of Table 9.2.)

Delays caused by dependencies on DSPControl fields

Some DSP ASE instructions are dependent because they produce and consume values kept in fields of the
DSPControl register. However, the most performance-critical of these dependencies are "by-passed" to make sure no
delay will occur - those are the dependencies between:

But other dependencies passed in DSPControl may cause delays; in particular the DSPControl[ouflag] bits set by vari-
ous kinds of overflow are not ready for a succeeding rddsp instruction. The access is interlocked, and will lead to a
delay of up to three clocks. We don’t expect that to be a problem (but if you know different, please get in touch with
MIPS Technologies).

More complicated dependencies

There can be delays which are dependent on the dynamic allocation of resources inside the CPU. In general you can’t
really figure out how much these matter by doing a static code analysis, and we earnestly advise you to get some kind
of high-visibility cycle-accurate simulator or trace equipment (probably based on Section 8.2, "PDtrace™ instruction
trace facility").

Advice on tuning DSP ASE instruction sequences

DSP algorithm functions are often the subject of intense tuning. There is more specific and helpful advice (with
examples) included in the white paper [DSPWP] published by MIPS Technologies.

addsc → DSPControl[c] → addwc

cmp.x → DSPControl[ccond] → pick.x

wrdsp → DSPControl[pos,scount] → insv
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9.6 Floating point instruction timing and data dependencies

This is not so simple. The floating point unit (FPU) has its own pipeline. More often than not, the FPU uses a half-rate
clock compared to the integer core - a full-speed FPU is a build option, but it will then usually limit the clock rate
which can be used in your design. The FPU pipeline is shown in Figure 9-1.

Figure 9-1 Overview of the FPU pipeline

The FPU is a multiply-add pipeline, and all register-to-register instructions go through six stages:

FR: obtains FP register values and converts them into an expanded internal format; With a half-speed FPU, instructions
issued from the integer core on an “odd” CPU cycle must wait one CPU clock time to start in the FPU.

M1, M2: multiply operation as required. Some long-latency operations “loop” in the M1 stage until complete, holding
up any subsequent FP instruction which would otherwise enter M1. Earlier instructions continue to run, leaving
bubbles in the FP pipeline stages M2 through FW.

A1, A2: add operation as required.

FP: convert result back to standard stored form and round.

FW: write back to FP register.

9.6.1 FPU register dependency delays

Any FPU instruction must go through pipeline stages from M1 through A2 before it produces a result, which can then
(as shown by the “bypass” lines in the pipeline diagram) be used by a dependent instruction reaching the M1 stage. If
you want to keep the FPU pipeline full, that means there must be three non-dependent instructions between the con-
sumer and producer of an FP value. However, other FP instruction delays can create bubbles in the FP pipeline, and
then you’ll need less than three intervening instructions.

9.6.2 Delays caused by “long-latency” instructions looping in the M1 stage

Instructions which take only one clock in M1 go through the pipeline smoothly and can be completed one per FPU
clock period. Instructions which take longer in M1 always prevent the next instruction from starting in the next clock,
regardless of any data dependency. Those long-latency instructions - double-precision multiplies and all division and
square root operations - are listed in Table 9.4:. An instruction which runs for 2 cycles in M1 holds up the FPU pipe-
line for one clock and so on - and of course the cycle counts are for FPU cycles.

WBRF AG EX MS ER

main pipeline

bypasses

FR
read FP reg

FP
pack into reg

FW
write FP reg

M1 M2 A1 A2
addmultiply, divide, sqrt

long−latency
instructions 
iterate in M1
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Table 9.4 Long-latency FP instructions

9.6.3 Delays on FPU load and store instructions

FPU store instructions stall in the main pipeline EX stage until the register data arrives from the FPU. Provided that
the store instruction doesn’t get behind slow FP instructions, FP stores run no more than one every two instructions
should not produce further delays.

FPU load instructions are subject to the usual FPU timing. So long as the load hits in the cache, you should see no
more than the usual FP producer-consumer delay from load to use.

9.6.4 Delays when main pipeline waits for FPU to decide not to take an exception

The MIPS architecture requires FP exceptions to be “precise”, which (in particular) means that no instruction after
the FP instruction causing the exception may do anything software-visible. That means that an FP instruction in the
main pipeline may not proceed past the ER stage until the FPU can either report the exception, or confirm that the
instruction will not cause an exception.

Floating point instructions cause exceptions not only because a user program has requested the system to trap IEEE
exceptional conditions (which is unusual) but also because the hardware is not capable of generating or accepting
very small (“denormalized”) numbers in accordance with the IEEE standards. The latter (“unimplemented”) excep-
tion is used to call up a software emulator to patch up some rare cases. But the main pipeline must be stalled until the
FP hardware can rule out an exception, and that leads to a stall on every non-trivial FP operation. With a half-rate
FPU, this stall will most likely be 6-7 clocks.

Software which can tolerate some deviation from IEEE precision can avoid these delays by opting to replace all
denormalized inputs and results by zero - controlled by the FCSR[FS,FO,FN] register bits described in Figure D.2
and its notes. If you have also disabled all IEEE traps, you get no possibility of FP exceptions and no extra main pipe-
line stalls.

9.6.5 Delays when main pipeline waits for FPU to accept an instruction

The half-speed FPU can never accept more than one instruction for every two main pipeline clocks. But if some of
your FP instructions are the long-latency ones described above, the FP pipeline has room for just one more instruction
before it backs up. Once it does back up, your whole CPU will stall until the long-latency instruction completes.

Operand Instruction type Instructions Cycles in M1

Double-precision (64-bit) Any multiplication mul.d, madd.d,
msub.d, nmadd.d,

nmsub.d

2

Single-precision (32-bit) Reciprocal recip.s 10

divide, square-root div.s, sqrt.s 14

reciprocal square root rsqrt.s 14

Double-precision (64-bit) Reciprocal recip.d 21

divide, square-root div.d, sqrt.d 29

reciprocal square root rsqrt.d 31
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9.6.6 Delays on mfc1/mtc1 instructions

Any FP instruction with GP register operands gets sent the GP values when it is launched, so mtc1 instructions have
standard FP instruction timing.

An mfc1 instructions needs to write data into the GP register file. In general it will not complete quickly enough to
use its main-pipeline WB slot, so the value returning to the integer unit must wait until the integer unit is not using the
GP register write port. The instruction which uses the value obtained by the mfc1 may stall until the data is available,
but that usually won’t be very long.

9.6.7 Delays caused by dependency on FPU status register fields

The conditional branch instructions bc1f/bc1t and the conditional moves movf/movt execute in the main pipeline,
but test a FP condition bit generated by the various FPU compare instructions.

9.6.8 Slower operation in “MIPS ITM” compatibility mode

Historic 32-bit MIPS CPUs had only 16 “even-numbered” floating point registers usable for arithmetic, with odd-
numbered registers working together with them to let you load, store and transfer double-precision (64-bit) values.
Software written for those old CPUs is incompatible with the full modern FPU, so there’s a compatibility bit provided
in Status[FR] - set zero to use MIPS I compatible code. This comes at the cost of slower repeat rates for FP instruc-
tions, because in compatibility mode not all the bypasses shown in the pipeline diagram above are active.
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297-6. Restricted to the MIPS I instruction set but with a lot of assembler examples.

Other references

[IEEE754]:: “IEEE Standard 754 for Binary Floating-Point Arithmetic”, published by the IEEE, widely available on
the web. Surprisingly comprehensible.

 C language header files

These files are available as part of the free-for-download “SDE Lite” subset available from MIPS Technologies’ web-
site. You’ll find them under.../sde/include/mips/.

[m32c0.h]:: the C definitions referred to in this manual for the names and fields of standard MIPS32 CP0 registers.

[mt.h]:: the C definitions for CP0 registers and other programmable resources of the MIPS MT system.

http://www.mips.com/
http://www.mips.com/
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Glossary

ASE: "Application-Specific Extension" to an instruction set. The acronym is used by MIPS Technologies to describe
optional add-ons to the core MIPS32/MIPS64 architecture. The multi-threading package is the "MIPS MT ASE"
and there’s a bunch of others including the recent "DSP ASE" which adds computational instructions relevant to
media-stream signal processing.

Co-processor:the MIPS architecture reserves some parts of the instruction set for "co-processors" - which have a few
standard instructions, some instruction encoding space and standard registers. Co-processors can be standard but
optional (like the floating point unit); a space for customers to build their own logic (like CP2); or, in the case of
"co-processor zero", just a way to separate the encodings of critical (and certainly not optional) processor control
operations and registers.

Co-processor zero:see CP0 below.

CP0: MIPS computers use a bunch of register fields for most CPU control purposes. They’re accessible only in high-
privilege mode, since they’re part of the protection system for a protected OS. The registers and the instructions
used to access them are defined using a built-in instruction set extension mechanism which conceives of four sets
of instruction encodings reserved for "co-processors": the control register set, which must be present in any
MIPS32 CPU, are "co-processor zero".

CP0 hazard:a hazard which makes some instruction sequences involving privileged operations (and particularly privi-
leged “CP0” registers) illegal. Until quite recently OS programmers were expected to deal with CP0 hazards by
inserting “enough” nop instructions between producers and consumers of CP0 values and state; but with Revi-
sion 2 of [MIPS32] there are better ways described in Section 7.1, "Hazard barrier instructions".

Dispatch Scheduler:the logical block of a MIPS MT multithreading CPU which determines which thread to favor when
issuing instructions into the sequential main pipeline.

EMT: (“Explicit Multithreading”) software which is deliberately written in terms of closely coupled (i.e. memory shar-
ing) concurrent threads. and therefore can directly benefit from multi-threading features of the underlying CPU.

Gating Storage:a kind of special uncacheable memory recognized by a multithreading CPU. It’s suitable for use for
accessing locations where the load/store will not be completed until some event external to the thread, with no
obvious maximum waiting time.

From the software’s point of view, gating storage is synchronous: no instruction, side-effect or exception from
the after the gating load/store is permitted unless and until the load/store completes. A load/store to gating stor-
age may be aborted at any time before it completes, and this will be signalled as a precise exception whose return

address is the load/store instruction1.

From the hardware’s point of view, gating storage has a special interface to the core. The storage subsystem must
signal a completed store, and the core can (at any time while waiting for a load/store to complete) ask the storage
subsystem to abort the operation. An aborted operation must be "as if it never happened".

There will be some handshaking between the core and the storage subsystem to avoid a race condition between
completion and abort. In some circumstances, software trying to abort a gated load/store will fail, and will be told

1. Or the branch instruction in whose delay slot the load/store lives - usual MIPS exception rules.
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that the operation completed before it could be aborted, and will then have to cope with whatever side-effects the
operation had.

Hazard:(or “pipeline hazard”) - an architectural requirement which requires you to avoid some instruction sequences.
Historical MIPS CPUs had some interesting hazards (like the “load delay slot” and an exception corner case on
multiply operations). For a long time MIPS CPUs have only had hazards on code sequences using privileged
operations, see CP0 hazard.

Interrupt exempt: in a MIPS MT CPU like the 34K core a TC may be marked as interrupt-exempt by setting
TCStatus[IXMT]; then any interrupt presented to the VPE will never cause an exception to that TC. If all TCs
belonging to a VPE are marked interrupt-exempt, that’s yet another way of disabling all interrupts.

Inter-Thread Communication storage:a generalized form of empty/full storage provided with the 34K core, and attach-
ing to the gating storage (see above) interface. It’s described in Section 3.3, "Inter-thread communication storage
(ITC)".

ITC: short for “Inter-Thread Communication storage” as above.

ITC Cell:one location of ITC storage. A cell stores 32 bits of data, but has multiple views at different memory loca-
tions, each of which behaves differently.

Pipeline hazard:see Hazard above.

Redirect:what happens in the pipeline when the 34K core encounters an unpredictable or wrongly-predicted branch
instruction. The branch address and condition are finally available by the end of the "EX" pipeline stage (see
Section 3-1, "The 34K™ core pipeline"); at this point all instructions in the pipeline or fetch unit for this thread
must be discarded, and instructions fetched from the now-correct instruction instead. That’s a redirect.

Relax:used for the extra "bogus TC" on the 34K core which does nothing. The external thread scheduling "policy man-
ager" (see below) has "relax" signals alongside those for real threads; when the "relax" condition has higher pri-
ority than any running threads the CPU does nothing for a cycle. This is a way of turning down the CPU
(possibly saving energy) when no thread is urgent. See Section 3.2.3, "Policy managers available for the 34K™
core family".

Shadow register set:an extra set of general-purpose registers which can be automatically used in an interrupt handler
(or other exception handler). Applications on MIPS32 architecture CPUs can use these shadow registers to
reduce the overhead of interrupt handlers, both by retaining quickly-used state in the shadow registers and by
avoiding the need to save and restore the state of the interrupted thread. See Section 7.3, "Shadow registers".

For software compatibility, the 34K core can recycle one or more otherwise-unused TCs’ registers as a shadow
set; see Section 4.4, "TCs recycled as Shadow registers".

Skid buffer:in a busy multi-threading CPU threads will block very frequently. When a thread blocks there may well be
later instructions from the same thread in the pipeline: you can’t stop the pipeline without holding up all the other
threads, and you can’t let this thread’s later instructions complete until this thread is unblocked. So those instruc-
tions must be discarded. It would be a problem if we had a full Redirect every time a thread blocked, so the 34K
core’s instruction fetch unit incorporates a "skid buffer" for each thread, which remembers the last couple of
instructions issued. When a thread blocks and instructions are discarded from the main pipeline, the skid buffer
can be backed up ready for the thread to be unblocked without having to fetch a whole lot more instructions.

TC: the logic and registers implementing a minimal thread state in the MIPS MT ASE (from "Thread Context"). A
TC has at least its own PC, general-purpose registers and some other necessary bits and pieces. One or more TCs
accessing the same complete set of CP0 registers make up a VPE.
The "Tera" project used the word "stream" for this.

Thread:a computation consisting of a set of computer instructions read and activated in their programmed order.
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Operating systems often use the word "thread" specifically for application-software-visible explicit threads
scheduled by the operating system kernel. But any code which is entered by something other than an application-
programmed branch forms a separate thread by this definition: an interrupt handler, for example.

Thread context:the complete state of a computation as held within the CPU. The thread state excludes (1) data stored in
memory, (2) state which is inaccessible to the instruction stream (such as CP0 register contents as seen by a user
task) and (3) state which is insignificant (such as cache contents, which generally make no difference to the
underlying memory image).

What comprises the thread state varies according to what sort of software is running. For a Linux OS interrupt
handler thread on a conventional MIPS CPU the CP0 registers are part of the thread context, but for a Linux
application thread they’re not. The thread state always (of course) includes the "program counter" ("PC").

Policy Manager (PM):an implementation-dependent piece of logic (located outside of the MIPS core) which receives
thread scheduling information from the CPU and hints from the TCSchedule/VPESchedule registers, and uses
those and other customer-chosen inputs to propose a priority for the various TCs. The interface is designed to
permit the policy manager to substantially define scheduling strategy, without the system being prone to failures
caused by the inevitable delay between thread events and the PM’s response to them reaching the in-core thread
scheduler.

Program Counter (PC):A software concept - the address of the next instruction that the thread will execute. It’s realiza-
tion in hardware is somewhat elusive in a pipelined CPU implementing the MIPS architecture. However, it
makes a comeback as a hardware-visible thing with the MIPS MT ASE; it is well-defined in hardware for any
thread loaded into a TC but which is currently stopped (that is, there are no non-speculative instructions in flight).
Such threads keep their PC in the TCRestart register.

Virtualizable:a CPU feature which can be allocated from a user-privilege program and (transparently to the user pro-
gram) provided by either the hardware or automatic OS assistance.

So when an OS offers "virtual memory" there’s memory which is accessible by the user program - but when there
isn’t enough memory the user program wanders off the ready-mapped pages, generates an exception which the
OS can catch and map some more memory before restarting the application (back exactly where it was when it
tried to reference the memory which wasn’t there).

MIPS MT resources - notably the TC which runs a concurrent thread - are defined to be virtualizable too. User
programs can do their own thread creation and termination using the fork/yield $0 instructions, with an OS
intervening when no TC is available.

VSMP:a system with multiple concurrent threads running in separate VPEs (see the next entry), which behaves much
like a multi-CPU system sharing memory with coherent caches (a "symmetric multiprocessor" or SMP system).

Virtual Processing Element :see VPE, next

VPE: one or more TCs sharing a bank of CP0 registers and privileged-architecture resources make up a VPE. The
"Tera" project called this a "team".

A single TC running in its own VPE - as seen by software unaware of the MIPS MT ASE - looks like an indepen-
dent CPU compliant with the MIPS32/MIPS64 specifications. So you can run legacy software (including any
OS) which is compatible with the MIPS architecture on a VPE even though the legacy software knows nothing
about multi-threading.

Yield Qualifier:a signal presented to the core interface which is available for test by the yield instruction; see Section
2.8.1, "Yield, Yield Qualifiers and threads waiting for hardware events".
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CP0 register summary and reference

This appendix lists all the CP0 registers of the 34K core. You can find registers by name through Table C.1, by num-
ber through Table C.2 and there’s our best shot at functional groupings below, under the heading Section C.3 “CP0
registers by function”. The registers-by-number Table C.2 tells you where to find a detailed description - if you’re
reading on-line it’s a hot-link.

C.0.0.1 Power-up state of CP0 registers

The traditions of the MIPS architecture regard it as software’s job to initialize CP0 registers. As a rule, only fields
where a wrong setting would prevent the CPU from booting are forced to an appropriate state by reset; other fields -
including other fields in the same register - are random. This manual documents where a field has a forced-from-reset
value; but your rule should be that all CP0 registers should be initialized unless you are quite sure that a random value
will be harmless.

C.0.0.2  A note on unused fields in CP0 registers

Unused fields in registers are marked either with a digit 0 or an “X”. A field marked zero is guaranteed to read zero on
cores in the 34K family. Unless stated otherwise, it’s usually best to write it either as zero or with a value you previ-
ously read from it. A field marked “X” may return any value, and nothing you write there will have any effect.
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C.1 CP0 registers by name

C.2 CP0 registers by number

Registers which are new with the multi-threading extension to the MIPS Architecture are marked with a dagger “†”.

Table C.1 CP0 registers by name
Register Number Register Number Register Number Register Number
Name Name Name Name

BadVAddr 8.0 EntryLo0 2.0 PerfCtl0 25.0 TraceBPC 23.4
CacheErr 27.0 EntryLo1 3.0 PerfCtl1 25.2 TraceControl 23.1
Cause 13.0 EPC 14.0 PerfCtl2 25.4 TraceControl2 23.2
Compare 11.0 ErrCtl 26.0 PerfCtl3 25.6 UserTraceData 23.3
Config 16.0 ErrorEPC 30.0 PRId 15.0 VPEConf0-1 1.2-3
Config1 16.1 HWREna 7.0 Random 1.0 VPEControl 1.1
Config2 16.2 IDataHi 29.1 SRSConf0-4 6.1-5 VPEOpt 1.7
Config3 16.3 IDataLo 28.1 SRSCtl 12.2 VPEScheFBack 1.6
Config7 16.7 Index 0.0 SRSMap 12.3 VPESchedule 1.5
Context 4.0 IntCtl 12.1 Status 12.0 WatchHi0 19.0
Count 9.0 ITagLo 28.0 TCBind 2.2 WatchHi1 19.1
DDataLo 28.3 LLAddr 17.0 TCContext 2.5 WatchHi2 19.2
DEPC 24.0 MVPConf0-1 0.2-3 TCHalt 2.4 WatchHi3 19.3
DESAVE 31.0 MVPControl 0.1 TCRestart 2.3 WatchLo0 18.0
Debug 23.0 PageMask 5.0 TCScheFBack 2.7 WatchLo1 18.1
DTagLo 28.2 PerfCnt0 25.1 TCSchedule 2.6 WatchLo2 18.2
EBase 15.1 PerfCnt1 25.3 TCStatus 2.1 WatchLo3 18.3
EntryHi 10.0 PerfCnt2 25.5 Wired 6.0

PerfCnt3 25.7 YQMask 1.4

Table C.2 Cross-referenced of CP0 registers by number
Regis-

ter
Register Function Refer to

No./Set Name
0.0 Index Index into the TLB array TLB indexing, p 86
0.1 MVPControl CPU-wide multithreading control Figure 2-5 , p. 38

0.2-3 MVPConf0-1 CPU’s multithreading resources Figure 2-4 , p. 37
1.0 Random Randomly generated index into the TLB array TLB indexing, p 86
1.1 VPEControl VPE control and status Figure 2-1 , p. 34

1.2-3 VPEConf0-1 Initializable per VPE resource lists Figure 2-6 , p. 39
1.4 YQMask Defines valid inputs for yield instruction Yield etc, p 30

1.5 VPESchedule Per-VPE thread policy hints 2.9.12 , p. 40
1.6 VPEScheFBack Per-VPE information from policy manager
1.7 VPEOpt Per-VPE cache-way inhibition Figure 2-7 , p. 40
2.0 EntryLo0 Output (physical) side of TLB entry for even-numbered virtual pages Figure 6-11 , p. 87
2.1 TCStatus Status and control for each TC Figure 2-2 , p. 35
2.2 TCBind VPE affiliation and own TC number of this TC Figure 2-3 , p. 37
2.3 TCRestart Where this TC will next fetch code from MIPS MT CP0 etc
2.4 TCHalt Set 1 to freeze the TC for inspection/modification Table 2.6 , p. 37
2.5 TCContext Read/write scratch register for OS to maintain thread ID MIPS MT CP0 etc
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2.6 TCSchedule Per-TC thread scheduling hints 2.9.12 , p. 40
2.7 TCScheFBack Per-TC information from policy manager
3.0 EntryLo1 Output (physical) side of TLB entry for odd-numbered virtual pages Figure 6-11 , p. 87
4.0 Context Mixture of pre-programmed and BadVAddr bits which can act as an OS

page table pointer.
Figure C-9 , p. 151

5.0 PageMask Control for variable page size in TLB entries Figure 6-10 , p. 86
6.0 Wired Controls the number of fixed ("wired") TLB entries TLB indexing, p 86

6.1-5 SRSConf0-4 Write these to use TCs as shadow registers Figure 7-4 , p. 95
7.0 HWREna Select which hardware registers are readable using the rdhwr instruction

in user mode.
H/W registers, p 122

8.0 BadVAddr Reports the address for the most recent TLB-related exception Exception control...
and TLB address
registers, p 151

9.0 Count Free-running counter at pipeline or sub-multiple speed Count/Compare p
145

10.0 EntryHi High-order portion of the TLB entry Figure 6-10 , p. 86
11.0 Compare Timer interrupt control Count/Compare p

145
12.0 Status Processor status and control Figure C-1 , p. 142
12.1 IntCtl Setup for interrupt vector and interrupt priority features. Figure 7-1 , p. 91
12.2 SRSCtl Shadow register set selectors Figure 7-2 , p. 93
12.3 SRSMap In VI (vectored interrupt) mode, determines which shadow set is used for

each interrupt source.
Figure 7-3 , p. 94

13.0 Cause Cause of last general exception Figure C-2 , p. 143
14.0 EPC Restart address from exception (no subfields, not described further in this

manual)
[MIPS32]

15.0 PRId Processor identification and revision Figure C-3 , p. 146
15.1 EBase Exception entry point base address and CPU/VPE ID Figure C-8 , p. 149
16.0 Config Configuration register Figure C-4 , p. 146
16.1 Config1 Configuration for MMU, caches etc Figure C-5 , p. 147
16.2 Config2
16.3 Config3 Interrupt and ASE capabilities Figure C-6 , p. 148
16.7 Config7 34K family-specific configuration Figure C-7 , p. 149
17.0 LLAddr Address associated with last ll instruction of the "load-linked/store-condi-

tional" instruction pair.
ll/sc, p 49

18.0 WatchLo0 I-Watchpoint address Figure C-10 , p. 152
18.1 WatchLo1
18.2 WatchLo2 D-Watchpoint address
18.3 WatchLo3
19.0 WatchHi0 I-Watchpoint control
19.1 WatchHi1
19.2 WatchHi2 D-Watchpoint control
19.3 WatchHi3
23.0 Debug EJTAG Debug register Figure 8-1 , p. 103
23.1 TraceControl Control fields for the PDTrace unit. Figure 8-13 , p. 112
23.2 TraceControl2
23.3 UserTraceData Software-generated PDTrace information register UserTraceData reg,

p. 114
23.4 TraceBPC Additional controls for PDTrace start/stop Figure 8-14 , p. 114

Table C.2 Cross-referenced of CP0 registers by number
Regis-

ter
Register Function Refer to

No./Set Name
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24.0 DEPC Restart address from last EJTAG debug exception EJTAG CP0 registers
p 102

25.0 PerfCtl0 Performance counter 0 control Figure 8-15 , p. 116
25.1 PerfCnt0 Performance counter 0
25.2 PerfCtl1 Performance counter 1 control
25.3 PerfCnt1 Performance counter 1
25.4 PerfCtl2 Performance counter 2 control
25.5 PerfCnt2 Performance counter 2
25.6 PerfCtl3 Performance counter 3 control
25.7 PerfCnt3 Performance counter 3
26.0 ErrCtl Software parity control and test modes for cache RAM arrays Figure 6-2 , p. 75
27.0 CacheErr Cache parity exception control and status Figure 6-1 , p. 74
28.0 ITagLo Cache tag read/write interface for I- and D-cache respectively (TagLo2 is

reserved for L2 cache)
6.4.11 , p. 82

28.2 DTagLo
28.4 TagLo2
28.1 IDataLo Low-order data read/write interface for I-, D- and L2 cache respectively...
28.3 DDataLo
29.1 IDataHi ... and high-order data for the I-cache, which is only accessible in 64-bit

units.
30.0 ErrorEPC Restart location from a cache parity error exception Cache error

exceptions, p 74
31.0 DESAVE Scratch read/write register for EJTAG debug exception handler EJTAG CP0 registers

p 102

Table C.2 Cross-referenced of CP0 registers by number
Regis-

ter
Register Function Refer to

No./Set Name
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C.3 CP0 registers by function

Basic modes Status 12.0 EJTAG debug Debug 23.0
Exception control Cause 13.0 DEPC 24.0

EPC 14.0 DESAVE 31.0
BadVAddr 8.0 PDTrace block TraceControl 23.1

Timer Count 9.0 TraceControl2 23.2
Compare 11.0 UserTraceData 23.3

Configuration PRId 15.0 TraceBPC 23.4
Config 16.0 debug/ analysis PerfCtl0-1 25.0/2
Config1-3 16.1-

3
PerfCnt0-1 25.1/3

Config7 16.7 WatchHi0-3 19.0-
3

EBase 15.1 WatchLo0-3 18.0-
3

IntCtl 12.1 regulate user-mode
access to hardware
registers

HWREna 7.0
SRSCtl 12.2

SRSMap 12.3 Parity/ECC control CacheErr 27.0
TLB maintenance
(only if TLB)

Context 4.0 ErrCtl 26.0
BadVAddr 8.0 ErrorEPC 30.0
EntryHi 10.0 Multithreading (glo-

bal)
MVPControl 0.1

EntryLo0 2.0 MVPConf0-1 0.2-3
EntryLo1 3.0 (per-VPE) VPEControl 1.1
PageMask 5.0 VPEConf0-1 1.2-3
Index 0.0 YQMask 1.4
Random 1.0 VPEScheFBack 1.6
Wired 6.0 VPEOpt 1.7

Cache management ITagLo 28.0 VPESchedule 1.5
DTagLo 28.2 SRSConf0-4 6.1-5
TagLo2 28.4 (per-TC) TCStatus 2.1
IDataLo 28.1 TCBind 2.2
DDataLo 28.3 TCRestart 2.3
DataLo2 28.5 TCHalt 2.4
IDataHi 29.0 TCContext 2.5

TCSchedule 2.6

TCScheFBack 2.7
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C.4 Miscellaneous CP0 register descriptions

Many CP0 registers in the 34K core are already described earlier in this manual, in a relevant section. But those which
got missed are described below, to make sure that every CP0 register field is at least mentioned in this manual.

C.4.1 Status register

The Status register is the most basic (and most diverse, for historical reasons) control register in the MIPS architec-
ture, and its fields are squashed into Figure C-1. All fields are writable unless noted otherwise.

The 34K family Status has no non-standard fields - they’re all as defined by [MIPS32]. Here and elsewhere these field
descriptions are fairly terse, and you should read behind this if you’re new to the MIPS architecture. Few of the fields
in Status are guaranteed to be initialized by hardware on a CPU reset; bootstrap code should write a reasonable value
to it early on (the same is true of many other CP0 registers, and the rule is “unless you know it’s safe to leave it ran-
dom, initialize it”).

A few fields are somewhat core-specific, and they are described at more length.

CU3-0: enables for different Co-processor instruction sets (replicated per-TC). Writable when such a coprocessor
exists. Since no 34K family CPU has a co-processor3, Status[CU3] is hard-wired zero.

Setting Status[CU0] to 1 has the peculiar effect of allowing privileged instructions to work in user mode; not
something a secure OS is likely to allow often.

RP: Reduced power - standard field.

It’s not connected inside the 34K core, but the state of the RP bit is available on the external core interface as the
SI_RP signal. The 34K core uses clocks generated outside the core, and this could be used in your design to
slow the input clock(s).

FR: if there is a floating point unit, set 0 for MIPS I compatibility mode (which means you have only 16 real FP
registers, with 16 odd FP register numbers reserved for access to the high bits of double-precision values).

RE: reverse endianness in user mode. Hard-wired to zero in the 34K core, which doesn’t provide this feature.

MX: write 1 to enable instructions in either the MIPS DSP extension to the MIPS architecture, or the MDMX™
extension. The two may not be used together, so MDMX will never be available for the 34K core. But for maximum
portability you can find out which by looking at Config3[DSPP] (1 if MIPS DSP is implemented) and Config1[MD] (1
if MIPS MDMX is implemented).

PX: see description of UX below (but always zero on the 32-bit 34K CPU).

BEV: "boot exception vectors" - when 1, relocates all exception vectors to near the reset-time start address. See Section
C.4, "Exception entry points". This bit is automatically set when the CPU is reset.

TS: (read-only) records whether there has been any “machine check” exception (caused by duplicate valid TLB entries,
generally a rather serious error) since the CPU was reset.

SR: MIPS32 architecture "soft reset" bit: the 34K core’s interface only supports a full external reset, so this always
reads zero.

Figure C-1 All Status register fields
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3-0 RP FR RE MX PX BEV TS SR NMI 0 CEE 0 IM7-0 KX SX UX KSU ERL EXL IE

In EIC (external int controller) mode IPL IM1-0
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NMI: (read-only) - non-maskable interrupt shares the "reset" handler code, this field reads 1 when it was a NMI event
which caused it.

CEE: CorExtend Enable: read/write bit. Set zero to disable "CorExtend" user-defined instructions.

Not all CorExtend blocks implement this bit (those that don’t are unconditionally enabled). But CorExtend
blocks should use this facility if they store internal state and rely on the OS to save/restore the state associated
with some particular task. In such blocks, running a CorExtend instruction with Status[CEE] set to zero will
cause the CPU to take a "CorExtend Unusable" exception - Cause[ExcCode] value 17. A suitably aware kernel
will catch the exception and use it to note that the task is one which uses CorExtend resources (and therefore will
need CorExtend state saved and restored appropriately).

Do not attempt to set this bit if CorExtend is not present.

IM7-0: bitwise interrupt enable for the eight interrupt conditions also visible in Cause[IP7-0]; except in the "EIC"
interrupt mode, see Section 7.2.3, "External Interrupt Controller (EIC) mode". In that case (as shown) the upper six
bits become the “interrupt priority level” (“IPL”) value in the range 0-63.

KX,SX,UX: the MIPS architecture’s memory mapping system changes slightly to support 64-bit addressing, and these
bits make that change for kernel-, supervisor- and user-privilege code respectively. But the 34K core is a 32-bit CPU,
so these are always zero.

KSU: execution privilege level - basically user or kernel:

Now that the intermediate “supervisor” privilege level is rarely used, this field is often shown as two separate
bits, with the bit 4 being called UM (“1 for user mode”).

ERL: "cache parity error exception mode" - which is really a stronger version of the exception mode Status[EXL] bit
whose description follows...

EXL: exception mode bit, set automatically when you first enter an exception handler or upon reset (reset is treated like
an exception). MIPS hardware barely supports nested exceptions, so this disables interrupts and software should
avoid causing an exception in the early part of the handler1.

IE: global interrupt enable, 0 to disable all interrupts.

C.4.2 Exception control: Cause and BadVAddr register

The BadVAddr register is set following any address-related exception. TLB (address translation) exceptions are
described below; but note that BadVAddr is also set by things like wrong alignment of addresses (but not on external
difficulties like bus error).

Cause tells you about the exception which just happened. Most fields are read-only:

0 kernel
1 supervisor - not available on 34K cores
2 user

1. There are some very special cases where nested exceptions are permitted, and the architecture specifies some rather special
behaviors to support those. But they’re beyond the scope of this manual; see [SEEMIPSRUN]: or the [MIPS32] bible.

Figure C-2 Fields in the Cause register
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0
BD TI CE DC PCI 0 IV WP 0 IP7-2 IP1-0 0 ExcCode 0

In EIC (external int controller) mode RIPL
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BD: 1 if the exception happened on an instruction in a branch delay slot; in this case EPC is set to restart execution at
the branch, which is usually the correct thing to do. You need only consult Cause[BD] when you need to look at the
instruction which caused the exception (perhaps to emulate it).

TI: last interrupt was from the on-core timer (see section below for Count/Compare.)

CE: if that was a "co-processor unusable" exception, this is the co-processor which you tried to use.

DC: (writable) set 1 to disable the Count register.

PCI: last interrupt was an overflow from the performance counters, see Section 8.4, "Performance counters".

IV: (writable) set 1 to use a special exception entry point for interrupts, see Section C.4, "Exception entry points". It’s
quite likely that if you’re doing this, you’re also using multiple entry points for different interrupt levels; see Section
7-1, "Fields in the IntCtl register".

WP: (writable to zero) - remembers that a watchpoint triggered when the CPU couldn’t take the exception because it
was already in exception mode (or error-exception mode, or debug mode). Since this bit automagically causes the
exception to happen again, it must be cleared by the watchpoint exception handler.

IP7-0, RIPL: the current state of the interrupt request inputs. When one of them is active and enabled by the
corresponding Status[IM7-0] bit, an interrupt may occur.

IP1-0 are writable, and in fact always just reflect the value written here. They act as software interrupt bits.

When using “EIC” interrupt mode the interpretation of this field changes, hence the alternate name of RIPL
(“requested interrupt priority level”). In EIC mode this represents a value between 0 and 63, and reflects the code pre-
sented on the incoming interrupt lines when the exception happened. For more information see Section 7.2.3,
"External Interrupt Controller (EIC) mode".

ExcCode: what caused that last exception. Lots of values, listed in Table C.3.

Table C.3 Exception Code values in Cause[ExcCode]
Val Code What just happened?

0 Int Interrupt
1 Mod Store, but page marked as read-only in the TLB
2 TLBL Load or fetch, but page marked as invalid in the TLB
3 TLBS Store, but page marked as invalid in the TLB
4 AdEL Address error on load/fetch or store respectively. Address is either wrongly

aligned, or a privilege violation.5 AdES

6 IBE Bus error signaled on instruction fetch
7 DBE Bus error signaled on load/store (imprecise)
8 Sys System call, ie syscall instruction executed.
9 Bp Breakpoint, ie break instruction executed.

10 RI Instruction code not recognized (or not legal)
11 CpU Co-processor instruction encoding for co-processor which is not enabled in

Status[CU3-0].
12 Ov Overflow from trapping form of integer arithmetic instructions.
13 Tr Condition met on one of the conditional trap instructions teq etc.
14 - Reserved
15 FPE Floating point unit exception - more details in FCSR.
16 - Available for implementation dependent use
17 CeU CorExtend instruction attempted when not enable by Status[CEE]
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C.4.3 Count and Compare

These two 32-bit registers form a useful and flexible timer. Count just counts. For the 34K core, that’s usually at the
full pipeline clock rate. But portable software can discover how fast Count counts by reading the “hardware register”
called “CCRes”, see Section 9.2, "User-mode accessible "Hardware registers"".

You can write Count to set a value in it, but it’s generally more valuable for an OS to leave it as a free-running
counter.

When the value of Count coincides with the value in Compare, an interrupt is raised. The interrupt is cleared every
time Compare is written. This is handy:

• For a periodic interrupt, simply advance Compare by a fixed amount each time (and check for the possibility that
Count has overrun it).

• To set a timer for some point in the future, just set Compare to an increment more than the current value of
Count.

The timer interrupt is implemented as an output signal at the core interface; but it’s conventional (well, pretty compul-
sory if you want OS’ to work) to return it to the same VPE on an interrupt line - see notes on IntCtl[IPTI] below Figure
7-1. However, if you have an “EIC” interrupt controller (see Section 7.2, "MIPS32® Architecture Release 2 -
enhanced interrupt system(s)") you’ll need to send the timer interrupt all the way out to the interrupt controller and
back.

C.4.4 PRId, Configuration and EBase registers

The PRId register identifies the CPU to software. It’s appropriately printed as part of the start-up display by any soft-
ware telling the world about its start-up; but when portable software is configuring itself around different CPU
attributes, it’s always preferable to sense those attributes directly - look in other Config registers, or perhaps a directed
software probe.

18 C2E Reserved for precise Coprocessor 2 exceptions
19-21 - Reserved

22 MDMX Tried to run an MDMX instruction but Status[MX] wasn’t set (most likely,
the CPU doesn’t do MDMX)

23 WATCH Instruction or data reference matched a watchpoint
24 MCheck “Machine check” - never happens in the 34K core.
25 Thread Thread-related exception, as described in [MIPSMT]; there’s a sub-cause

field in VPEControl[EXCPT], as shown in Section 2-1, "Fields in the
VPEControl register".

26 DSP Tried to run an instruction from the MIPS DSP ASE, but it’s not enabled
(that is, Status[MX] is zero).

27-29 - Reserved
30 CacheErr Parity/ECC error somewhere in the core, on either instruction fetch, load or

cache refill. In fact you never see this value in Cause[ExcCode]; but some
of the codes in this table including this one can be visible in the “debug
mode” of the EJTAG debug unit - see Section 8.1, "EJTAG on-chip debug
unit", and in particular the notes on the Debug register in Section 8-1,
"Fields in the EJTAG CP0 Debug register".

31 - Reserved

Table C.3 Exception Code values in Cause[ExcCode]
Val Code What just happened?
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All these fields are read-only:

CompanyOpts: is as specified by the SoC builder who synthesizes the core. It should be a number between 0 and 127 -
higher values are reserved by MIPS Technologies.

CompanyID: is 1 for MIPS Technologies

ProcessorID: is 0x95 for the 34K core.

Revision: shows the version of the core. This number (divided into Major, Minor and Patch level as shown) is
referenced in the Errata Sheet provided to customers from time to time by MIPS Technologies. The following
revisions have been shipped to date:

Figure C-4 shows the fields of the Config register, which mixes read-only and writable fields:

M: reads 1 if Config1 is available.

K23, KU: (wriable) if your 34K core-based system uses fixed mapping instead of having a TLB, you set the cacheability
attributes of chunks of the memory map by writing these fields. If you have a TLB, these fields are unused (write
only zeroes to them).

Config[K23] is for program addresses 0xC000.0000-0xFFFF.FFFF (the "kseg2" and "kseg3" areas), while Config[KU]
is for program addresses 0x0000.0000-0x7FFF.FFFF (the "kuseg" area)

Down at the bottom of the register Config[K0] sets the cacheability of kseg0, but it would be very unusual to make that
anything other than cacheable.

ISP/DSP: (read-only) reads 1 if I-side/D-side scratchpad (SPRAM) is fitted, see Section 6.5, "Scratchpad memory/
SPRAM". (Don’t confuse this with the MIPS "DSP" ASE, whose presence is indicated by Config3[DDSP].)

UDI: (read-only) reads 1 if your core implements user-defined "CorExtend" instructions, and (if this is a MT CPU) if
the CorExtend unit is made available to this VPE by the setting of the VPEConf0 register.

SB: read-only "SimpleBE" bus mode indicator.

If set, means that this core will only do simple partial-word transfers on its OCP interface; that is, the only par-
tial-word transfers will be byte, aligned half-word and aligned word.

Figure C-3 34K™ processor ID (PRId) register
31 24 23 16 15 8 7 5 4 2 1 0
CompanyOpts CompanyID ProcessorID Revision

0 1 0x95 Major Minor Patch

Release
Identifier

PRId[Revision]
Maj.min.patch/hex Description Date

1_0_* 0.1.1 / 0x5 Early Access (EA) release June 13, 2005
2_0_* 1.0.0 / 0x20 General Availability (GA) release September 30, 2005
2_1_* 2.1.0 / 0x44 MR1 release. Bug fixes, 8KB cache support, OCP Resync

Support.
March 10, 2006

Figure C-4 Fields in the Config register
31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

Config M K23 KU ISP DSP UDI SB 0 0 MM 0 BM BE AT AR MT 0 VI K0
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If zero, it may generate partial-word transfers with an arbitrary set of bytes enabled (which some memory con-
trollers may not like).

MM: writable: set 1 if you want writes resulting from separate store instructions in write-through mode merged into a
single (possibly burst) transaction at the interface. Note that the Config[MM] bit is not replicated per-VPE (like most
CP0 fields): there’s only one per CPU and anything written by one VPE affects the other one.

This doesn’t affect cache writebacks (which are always whole blocks together) or uncached writes (which are
never merged).

BM: read-only - tells you whether your bus uses sequential or sub-block burst order; set by hardware to match your
system controller.

BE: (read-only) 1 for big-endian, 0 for little-endian.

AT: (read-only) MIPS32 or MIPS64 compliance  On 34K family cores it will read “0”, but the possible values are:

AR: Architecture revision level. On 34K family cores it will read “1”, denoting release 2 of the MIPS32 specification.

MT: (read-only) MMU type (all MIPS Technologies cores may be configured as type 1 or 3):

VI: (read-only) 0 because no 34K family core has a virtually indexed and virtually tagged I-cache

K0: (writeable) is the fixed kseg0 region cached or uncached? And if cached, how exactly does it behave - this field is
encoded just like the "cache coherency attribute" field of a TLB entry, as it shows up in the EntryLo0-1 register.

Figure C-5 shows the Config1-2 registers, both of which are wholly read-only:

Config1[M]: continuation bit, 1 if Config2 is implemented.

Config1[MMUSize]: the size of the TLB array (the array has MMUSize+1 entries). On the 34K core this is a read-only
field which automagically returns the number of entries available to your VPE - unless the TLB is shared, in which
case it returns the size of the whole array.

0 MIPS32
1 MIPS64 instruction set but MIPS32 address map
2 MIPS64 instruction set with full address map

0 None
1 MIPS32/64 compliant TLB
2 "BAT" type
3 MIPS-standard fixed mapping

Figure C-5 Fields in the Config1-2 registers
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

Config1 M MMUSize L1 I-cache L1 D-cache C2 MD PC WR CA EP FP
IS IL IA DS DL DA

31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Config2 M L3 cache L2 cache
TU TS TL TA SU SS SL SA
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L1 I-cache, L1 D-cache: for each cache this reports

So if (IS, IL, IA) is (2,4,3) you have 256 sets/way, 32 bytes per line and 4-way set associative: that’s a 32Kbyte
cache.

Config1[C2,FP]: 1 if CP2 or CP1 is available respectively. A coprocessor 2 would be a customer-designed coprocessor,
but FP selects CP1, the floating point unit. In an MT system these bits reflect whether the units are really available to
this VPE, which depends on the setting of VPEConf0[NCP2,NCP1].

Config1[MD]: 1 if MDMX ASE is implemented in the floating point unit (very unlikely for the 34K core).

Config1[PC]: there is at least one performance counter implemented, see Section 8.4, "Performance counters".

Config1[WR]: reads 1 because the 34K core always has watchpoint registers, see Figure C-10.

Config1[CA]: reads 1 because the MIPS16e compressed-code instruction set is available (as it generally is on MIPS
Technologies cores).

Config1[EP]: reads 1 because an EJTAG debug unit is always provided, see Section 8.1, "EJTAG on-chip debug unit".

Config1[FP]: see entry shared with Config1[C2] above.

Config2[M]: continuation bit, 1 if Config3 is implemented.

Config2[TU]: implementation-specific bits related to tertiary cache, if fitted. Can be writable.

Config2[TS,TL,TA]: tertiary cache size and shape - encoded just like Config1[IS,IL,IA] which see above.

Config2[SU]: implementation-specific bits for secondary cache, if fitted. Can be writable.

Config2[SS,SL,SA]: secondary cache size and shape, encoded like Config1[IS,IL,IA] above.

The Config3 register is wholly read-only. It’s fields shown in Table C-6 are:

Config3[M]: continuation bit, zero because there is no Config4.

DSPP: reads 1 if the MIPS DSP extension is implemented, as described in Chapter 5, “The MIPS32® DSP ASE” on
page 57.

VEIC: read-only bit from the core input signal SI_EICPresent which should be set in the SoC to alert software to the
availability of an EIC-compatible interrupt controller, see Section 7.2, "MIPS32® Architecture Release 2 - enhanced
interrupt system(s)". The core interface signal is replicated per-VPE: it is possible (if peculiar) to have only one VPE
provided with an EIC-compatible interrupt controller.

VInt: reads 1 to tell you that the 34K core can handle vectored interrupts.

SP: reads 0 to tell you the 34K core does not support sub-4Kbyte page sizes.

MT: reads 1 to tell you the 34K core implements the MIPS MT (multithreading) extension.

SM: reads 0, the 34K core does not handle instructions from the "SmartMIPS" ASE.

S Number of sets per way. Calculate as: 64 × 2S

L Line size. Zero means no cache at all, otherwise calculate as: 2 × 2L

A Associativity/number of ways - calculate as A + 1

Figure C-6 Fields in the Config3 register
31 30 11 10 9 7 6 5 4 3 2 1 0
M 0 DSPP 0 VEIC VInt SP 0 MT SM TL
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TL: reads 1 if your core will do instruction trace.

Figure C-7 Fields in the Config7 Register

Config7 is a mix of read-only fields (kept in the top 16 bits) and writable fields controlling implementation-dependent
options (in the low 16 bits).  They are:

Config7[HCI]: read-only field which is always zero on 34K family cores. It reads 1 for some software-simulated CPUs,
to indicate that the software-modelled cache does not require initialization. Most software should ignore this bit.

Config7[FPR]: read-only field. Reads 1 if an FPU is fitted but (as is common) it runs at half the main core clock rate.

Config7[AR]: read-only field, indicating that the D-cache is configured to avoid cache aliases (see Section 6.4.7, "Cache
aliases").

All the remaining fields are read/write, and control various functions. Only one of them is likely to find real system
use:

Config7[ES]: defaults to zero. If set, the sync instruction will be signalled on the core’s OCP interface as an "ordering
barrier" transaction. The transaction is an extension to the OCP standards, and system controllers which don’t
support it will typically under-decode it as a read from the boot ROM area. But that’s going to be quite slow: so set
this bit only if your system understands the synchronizing transaction. This option may be set only for the whole
CPU: setting it for one VPE sets it for the other.

The remaining writable fields default to zero and are uncommonly set. It is therefore always safe not to write Config7.
Some of these bits are for diagnostics and experimentation only:

Config7[NBLSU]: set 1 to arrange that load/store pipeline stalls will stop the main pipeline too, keeping them
synchronized. For debug and investigation only.

Config7[ULB]: set 1 to make all uncached loads blocking (a program usually only blocks when it uses the data which is
loaded). You want to do this only when nothing else will work...

Config7[BP]: when set, no branch prediction is done, and all branches and jump stall as above.

Config7[RPS]: when set, the return address branch predictor is disabled, so jr$31 is treated just like any other jump
register. Instruction fetch stalls after the branch delay slot, until the jump instruction reaches the "EX" stage in the
pipeline and can provide the right address (typically adds 5 clocks compared to a successfully predicted return
address).

Config7[BHT]: when set, the branch history table is disabled and all branches are predicted taken. This bit is don’t care
if Config7[BP] is set.

Config7[SL]: when set, disables non-blocking loads. Normally the 34K core will keep running after a load instruction
even if it misses in the D-cache, until the data is used. With this disable bit set, the CPU will stall on any load D-
cache miss.

The EBase register

31 19 18 17 16 15 9 8 7 6 5 4 3 2 1 0

0 HCI FPR AR 0 ES 0 NBLSU ULB BP RPS BHT SL

Figure C-8 Fields in the EBase register
31 30 29 12 11 10 9 0
1 0 ExceptionBase 0 CPUNum
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EBase is primarily supplied for multi-CPU systems (or with a MIPS MT CPU, for systems using multiple VPEs). It
does two vital jobs: one is to allow software to know which CPU it’s running on and the other is to relocate the excep-
tion entry points. The latter is necessary because CPUs sharing a memory map (as SMP CPUs often do and the VPEs
inside a MIPS MT CPU are obliged to do) have their exception entry points in kseg0, so they will map to the same
physical location, and the CPUs would end up jumping to the same exception handlers.

So in Figure C-8:

1 0: is prefixed to the base address bits to make sure the exception vector ends up in the "kseg0" region, conventionally
used for OS code.

ExceptionBase: is the base address for the exception vectors, adjustable to a resolution of 4Kbytes. See Table C.4
below for where that leaves all the exception entry points.

That means any or all of your CPUs and/or VPEs can have their own unique exception handlers.

CPUNum: on single-threaded CPUs this is just a single "CPU number" field (set by the core interface bus
SI_CPUNum, which the SoC designer will tie to some suitable value).

But on MIPS MT CPUs that is augmented by some per-VPE value - typically in the least significant bits - so that each
VPE gets a distinct value returned for EBase[CPUNum].

Exception entry points

The incremental growth of exception entry points has left no one place where all the entry points are summarized; so
here’s Table C.4. You need to accept that BASE is 0x8000.0000 for CPUs without an EBase register (or where the
software, ignoring the EBase register, leaves it at its power-on value); and that otherwise BASE is the 4Kbyte-aligned
address found in EBase[ExceptionBase].

C.4.5 Configuring interrupts - The IntCtl and SRSCtl registers

The IntCtl register is defined in Section 7.2, "MIPS32® Architecture Release 2 - enhanced interrupt system(s)".

The registers used for shadow register control and setup (SRSCtl and SRSMap) are described in Section , "Selecting
shadow sets - SRSCtl".

Table C.4 Exception entry points
Memory region Entry point Exceptions handled here

EJTAG probe-mapped 0xFF20.0200 EJTAG debug, when mapped to "probe" memory.
ROM-only entry points 0xBFC0.0480 EJTAG debug, when using normal ROM memory.

0xBFC0.0000 Post-reset and NMI entry point.
ROM entry points (when

Status[BEV]==1)
0xBFC0.0200 Simple TLB Refill (Status[EXL]==0).
0xBFC0.0300 Cache Parity Error
0xBFC0.0400 Interrupt special (Cause[IV]==1).
0xBFC0.0380 All others

"RAM" entry points
(Status[BEV]==0)

BASE+0x100 Cache parity error - in RAM. but always through uncached kseg1
window.

BASE+0x000 Simple TLB Refill (Status[EXL]==0).
BASE+0x200 Interrupt special (Cause[IV]==1).

BASE+0x200+... multiple interrupt entry points - seven more in "VI" mode, 63 in
"EIC" mode.

BASE+0x180 All others
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C.4.6 TLB registers

Four CP0 registers represent the contents of a TLB entry: EntryHi, EntryLo0-1 and PageMask. They’re quite intri-
cately tied in to the TLB’s operation and are all shown in Section 6.6, "The TLB and translation" above.

There are also the address-exception registers BadVAddr and Context. We’ll deal with them here.

TLB address registers: BadVAddr and Context

On any address-related exception (including all TLB-related exceptions) BadVAddr tells you the virtual address
whose translation when wrong (some of the same bits showed up as the value loaded into EntryHi[VPN2] and dis-
cussed above).

Context just contains a mix of pre-programmed and borrowed-from-BadVAddr bits, as shown in Table C-9.

The idea is that Context[PTEBase] can be set to the base address of a (suitably aligned) page table in memory; then
the VPN number is shifted such that each ascending 8Kbyte translation unit generates another step through a page
table (assuming that each entry is 2×32-bit words in size - reasonable since you need to store at least the two candi-
date EntryLo0-1 values.)

An OS which can accept a page table in this format can contrive that in the time-critical simple TLB refill exception,
Context automagically points to the right page table entry for the new translation.

This is a great idea, but modern OS’ tend not to use it - the demands of portability mean it’s too much of a stretch to
bend the page table information to fit this model.

C.4.7 Cache registers

Implementation-dependent, see Section 6.4.11, "Cache initialization and tag/data registers".

C.4.8 EJTAG unit registers

see Section 8.1, "EJTAG on-chip debug unit".

C.4.9 Watchpoint registers

Watchpoint registers are a debugging aid, allowing you to cause an exception when instructions are fetched (or the
CPU loads/stores) from particular virtual addresses.

In many cases it’s better to use the more extensive breakpoint/watchpoint facilities provided in the EJTAG debug unit,
see Section 8.1, "EJTAG on-chip debug unit".

Each watchpoint is controlled by a pair of CP0 registers. The 34K core has two instruction watchpoints WatchLo0/
WatchHi0 and WatchLo1/WatchHi1; and two data watchpoints WatchLo2/WatchHi2 and WatchLo3/WatchHi3.

Figure C-9 Fields in the Context register
31 23 22 4 3 0

PTEBase BadVPN2 0
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Where:

VAddr: the address to match on, with a resolution of a doubleword.

WatchLo[I], WatchLo[R], WatchLo[W]: accesses to match: I-fetches, Reads (loads), Writes (stores). The 34K core uses
separate I- and D-side watchpoints. So in the I-side watchpoints you’ll find that WatchLo0-1[R] and WatchLo0-1[W]
is fixed to zero, while on the D-side WatchLo2-3[I] will be zero.

M: the WatchHi[M] bit is set whenever there is one more watchpoint register pair to find; your software should use it to
figure out how many watchpoints there are (and should not rely on this manual for this purpose).

G, ASID: WatchHi[ASID] matches addresses from a particular address space (the "ASID" is like that in TLB entries) -
except that you can set WatchHi[G] ("global") to match the address in any address space.

Mask: implements address ranges. Set bits in WatchHi[Mask] to mark corresponding VAddr address bits to be ignored
when deciding whether this is a match.

WatchHi[I], WatchHi[R], WatchHi[W]: read WatchHi after a watch exception, and these fields tell you what type of
access (if anything) matched.

C.4.10 Performance counter registers

Performance counters are provided to allow software to monitor the occurrence of events of interest within the core,
and can be very useful in analyzing system performance. They’re described in Section 8.4, "Performance counters"
above.

C.4.11 Parity/ECC control

The ErrCtl register controls parity protection of the L1 caches (if it was configured in your core in the first place) and
is described in Section 6.3.5, "ErrCtl register" above (and in particular Figure 6-2.

C.4.12 Registers added for Multithreading

See Section 2.9, "Multithreading ASE - CP0 (privileged) registers".

Figure C-10 Fields in the WatchLo/WatchHi registers
31 30 29 24 23 16 15 12 11 3 2 1 0

WatchLo VAddr I R W

WatchHi M G 0 ASID 0 Mask I R W
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MIPS® Architecture quick-reference sheet(s)

D.1 General purpose register numbers and names

By ancient convention the general-purpose registers in the MIPS architecture have conventional names which remind
you of their standard usage in popular MIPS ABIs. Table D.1 shows those names related to both the "o32" ABI
(almost universally used for 32-bit MIPS applications), but also the minor variations in the "n32" and "n64" ABIs
defined by Silicon Graphics.

If you’re not sure what an ABI is, just read the "o32" column!

D.2 Floating point information

You should read a book on floating point (the MIPS architecture is highly compliant with the IEEE754 standard), or
read [SEEMIPSRUN]: to understand MIPS floating point well. This section is just bare reference material.

D.2.1 Data representation

Figure D-1 shows how data is stored in MIPS registers. These are recommended interpretations of the 32-bit and 64-
bit formats mentioned in the IEEE standards.

Table D.1 Conventional names of registers with usage mnemonics
Register Nos name use
$0 zero always zero
$1 AT assembler temporary
$2-$3 v0-v1 return value from function
$4-$7 a0-a3 arguments

o32 n32/n64
name use name use

$8-$11 t0-t3 temporaries a4-a7 more arguments
$12-$15 t4-t7 t0-t3 temporaries
$24-$25 t8-t9 t8-t9
$16-$23 s0-s7 saved registers
$26-$27 k0-k1 reserved for interrupt/trap handler
$28 gp global pointer
$29 sp stack pointer
$30 s8/fp frame pointer if needed (additional saved register if not)
$31 ra Return address for subroutine
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Figure D-1 How floating point numbers are stored in a register

Where:

• sign: FP numbers are positive numbers with a separate sign bit; "1" denotes a negative number.

• mantissa: represents a binary number. But this is a floating point number, so the units depend on:

• exp: the exponent.

When 32-bit data is held in a 64-bit register, the high 32 bits are don’t care.

Floating point data in memory is endianness-dependent, in just the same way as integer data is; the higher bit-num-
bered bytes shown in Section D-1, "How floating point numbers are stored in a register" will be at the lowest memory
location when the core is configured big-endian, and the highest memory location when the core is little-endian.

D.2.2 Setting up the FPU and the FPU control registers

There’s a fair amount of state which you set up to change the way the FPU works; this is controlled by fields in the
FPU control registers, described here.

[IEEE754] defines five classes of exceptional result. For each class the programmer can select whether to get an
IEEE-defined "exceptional result" or to be interrupted. Exceptional results are sometimes just normal numbers but
where precision has been lost, but also can be an infinity or NaN ("not-a-number") value.

Control over the interrupt-or-not options is done through the FCSR[Enable] field (or more cleanly through FENR, the
same control bits more conveniently presented); see Table D.2 below.

It’s overwhelmingly popular to keep FCSR[Enable] zero and thus never generate an IEEE exception.

There are five FP control registers:

float

double

1623 815 07

mantissasign exp

2431

5663 323940474855 16232431 815 07

mantissasign exp
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The FP implementation (FIR) register

Figure D-2 shows the fields in FIR and the read-only value they always have for 34K family FPUs:

The fields have the following meanings:

FC: "full convert range": the hardware will complete any conversion operation without running out of bits and causing
an "unimplemented" exception.

F64/L/W/D/S: this is a 64-bit floating point unit and implements 64-bit integer ("L"), 32-bit integer ("W"), 64-bit FP
double ("D") and 32-bit FP single ("S") operations.

3D: does not implement the MIPS-3D ASE.

PS: does not implement the paired-single instructions described in [MIPS64]

Processor ID/Revision: major and minor revisions of the FPU - as is usual with revisions it’s very useful to print these
out from a verbose sign-on message, and rarely a good idea to have software behave differently according to the
values.

The FP control/status registers (FCSR, FCCR, FEXR, FENR)

Figure D-3 shows all these registers and their bits

Table D.2 FPU (co-processor 1) control registers
Conventional CP1 ctrl Description

Name reg no.
FCSR 31 Extensive control register - the only FPU control register on histori-

cal MIPS CPUs.
Contains all the control bits. But in practice some of them are more
conveniently accessed through FCCR, FEXR and FENR below.

FIR 0 FP implementation register: read-only information about the capa-
bility of this FPU.

FCCR 25 Convenient partial views of FCSR are better structured, and allow
you to update fields without interfering with the operation of inde-
pendent bits.
FCCR has FP condition codes, FEXR contains IEEE exceptional-
condition information (cause and flag bits) you read, and FENR is
IEEE exceptional-condition enables you write.

FEXR 26
FENR 28

Figure D-2 Fields in the FIR register
31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

FIR 0 FC 0 F64 L W 3D PS D S Processor ID Revisio.sp.25
34K core 1 1 1 1 0 0 1 1 0xXX whatever
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Where:

FCC7-0: the floating point condition codes: set by compare instructions, tested by appropriate branch and conditional
move instructions.

FS/FO/FN: options to avoid "unimplemented" exceptions when handling tiny ("denormalized") numbers1. They do so
at the cost of IEEE compatibility, by replacing the very small number with either zero or with the nearest nonzero
quantity with a normalized representation.

The FO ("flush override") bit causes all tiny operand and result values to be replaced.

The FS ("flush to zero") bit causes all tiny operand and result values to be replaced, but additionally does the
same substitution for any tiny intermediate value in a multiply-add instruction. This is provided both for legacy
reasons, and in case you don’t like the idea that the result of a multiply/add can change according to whether you
use the fused instruction or a separate multiply and add.

The FN bit ("flush to nearest") bit causes all result values to be replaced with somewhat better accuracy than you
usually get with FS: the result is either zero or a smallest-normalized-number, whichever is closer. Without FN
set you can only replace your tiny number with a nonzero result if the "RP" or "RM" rounding modes (round
towards more positive, round towards more negative) are in effect.

For full IEEE-compatibility you must set FCSR[FS,FO,FN] == [0,0,0].

To get the best performance compatible with a guarantee of no "unimplemented" exceptions, set
FCSR[FS,FO,FN] == [1,1,1].

Just occasionally for legacy applications developed with older MIPS CPUs which did not have the FO and FN
options, you might set FCSR[FS,FO,FN] == [1,0,0].

E: (often shown in documents as part of the Cause array) is a status bit indicating that the last FP instruction caused an
"unimplemented" exception.

Cause/Enables/Flags: each of these fields is broken up into five bits, each representing an IEEE-recognized class of
exceptional results2 which can be individually treated either by interrupting the computation, or substituting an
IEEE-defined exceptional value. So each field contains:

Figure D-3 Floating point control/status register and alternate views
31 25 24 23 22 21 20 18 17 16 12 11 8 7 6 3 2 1 0

FCSR FCC7-1 FS FCC0 FO FN 0 E Cause Enables Flags RM

FCCR 0 FCC7-0

FEXR 0 E Cause 0 Flags 0

FENR 0 Enables 0 FS RM

1. See [SEEMIPSRUN]: for an explanation of "normalized" and "denormalized".
2. Sorry about the ugly wording. The IEEE standard talks of "exceptions" which makes more sense but gets mixed up with

MIPS "exceptions", and they’re not the same thing.

bit number 4 3 2 1 0
field V Z O U I
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The bits are V for invalid operation (e.g. square root of -1), Z for divide-by-zero, O for overflow (a number too
large to represent), U for underflow (a number too small to represent without loss of precision) and I for inexact -
even 1/3 is inexact in binary.

Then the:

Enables: field is "write 1 to take a MIPS exception if this condition occurs" - rarely done. With the IEEE exception-
catcher disabled, the hardware/emulator together will provide a suitable exceptional result.

Cause: field records what if any conditions occurred in the last-executed FP instruction. Because that’s often too
transient, the

Flags: field remembers all and any conditions which happened since it was last written to zero by software.

RM: is the rounding mode, as required by IEEE:

RM Meaning
0 Round to nearest - RN

If the result is exactly half-way between the nearest values, pick the one whose
mantissa bit0 is zero.

1 Round toward zero - RZ
2 Round towards plus infinity - RP

"Round up" (but unambiguous about what you do about negative numbers).
3 Round towards minus infinity - RM



 MIPS® Architecture quick-reference sheet(s)

158 Programming the MIPS32® 34K™ Core Family, Revision 01.30

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.



Appendix E

Programming the MIPS32® 34K™ Core Family, Revision 01.30 159

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

CP0 Registers of the 34K Core

The System Control Coprocessor (CP0) provides the register interface to the 34K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CP0 register has a
unique number that identifies it; this number is referred to as the register number. For instance, the PageMask regis-
ter is register number 5. A register may also have a select After updating a CP0 register there is a hazard period of
zero or more instructions from the update instruction (MTC0) and until the effect of the update has taken place in the
core.

This chapter contains the following sections:

• E.1 “CP0 Register Summary” below

• E.2 “CP0 Register Descriptions” on page 161

E.1 CP0 Register Summary

Table E.1 lists the CP0 registers in numerical order. The individual registers are described throughout this chapter.

Table E.1 CP0 Registers

Register

Function

Per

Number Select Name VPE TC Proc

0 0 Index1 Index into the TLB array. This register is reserved if the TLB is not
implemented.

X

1 0 Random1 Randomly generated index into the TLB array. This register is
reserved if the TLB is not implemented.

X

2 0 EntryLo01 Low-order portion of the TLB entry for even-numbered virtual
pages. This register is reserved if the TLB is not implemented.

3 0 EntryLo11 Low-order portion of the TLB entry for odd-numbered virtual pages.
This register is reserved if the TLB is not implemented.

X

4 0 Context2 Pointer to page table entry in memory. This register is reserved if the
TLB is not implemented.

X

5 0 PageMask PageMask controls the variable page sizes in TLB entries. This reg-
ister is reserved if the TLB is not implemented.

X

6 0 Wired1 Controls the number of fixed (“wired”) TLB entries. This register is
reserved if the TLB is not implemented.

X

7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode.

X

8 0 BadVAddr2 Reports the address for the most recent address-related exception. X

9 0 Count2 Processor cycle count. X
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10 0 EntryHi1 High-order portion of the TLB entry. This register is reserved if the
TLB is not implemented.

X X3

11 0 Compare2 Timer interrupt control. X

12 0 Status2 Processor status and control. X X4

12 1 IntCtl2 Set-up for interrupt vector and interrupt priority features. X

12 2 SRSCtl2 Shadow register set selectors X

12 3 SRSMap2 In vectored interrupt mode, determines which shadow set is used for
each interrupt source.

X

13 0 Cause2 Cause of last exception. X

14 0 EPC2 Program counter at last exception. X

15 0 PRId Processor identification and revision. X

15 1 EBase Exception base address. X

16 0 Config Configuration register. X

16 1-2 Config1-2 Configuration for MMU, caches, etc. X

16 3 Config3 Interrupt and ASE capabilities X

16 7 Config7 34K family-specific configuration register. X

17 0 LLAddr Address associated with last LL instruction of a “load-linked/store-
conditional” instruction pair.

X

18 0-1 WatchLo0-12 Low-order watchpoint address associated with instruction watch-
points.

X

18 2-3 WatchLo2-32 Low-order watchpoint address associated with data watchpoints. X

19 0-1 WatchHi0-12 High-order watchpoint address used for instruction watchpoints. X

19 2-3 WatchHi2-32 High-order watchpoint address used for data watchpoints. X

23 0 Debug5 EJTAG Debug register. X

24 0 DEPC5 Restart address from last EJTAG debug exception. X

25 0 PerfCtl0 Performance counter 0 control. X

25 1 PerfCnt0 Performance counter 0. X

25 2 PerfCtl1 Performance counter 1 control. X

25 3 PerfCnt1 Performance counter 1. X

25 4 PerfCtl2 Performance counter 2 control. X

25 5 PerfCnt2 Performance counter 2. X

25 6 PerfCtl3 Performance counter 3 control. X

25 7 PerfCnt3 Performance counter 3. X

26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache
and D-Cache.

X

27 0 CacheErr Records information about cache parity errors X

Table E.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc
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E.2 CP0 Register Descriptions

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For the read/write properties of the field, the following notation is used:

28 0 TagLo0 Cache tag read/write interface for I-cache. X

28 1 DataLo0 Low-order data read/write interface for I-cache. X

28 2 TagLo1 Cache tag read/write interface for D-cache. X

28 3 DataLo1 Low-order data read/write interface for D-cache. X

28 4 TagLo2 Cache tag read/write interface for L2-cache. X

28 5 DataLo2 Low-order data read/write interface for L2-cache. X

29 0 DataHi0 Upper bits for I-cache interface. This is only accessible in 64-bit
units.

X

30 3 ErrorEPC2 Program counter at last error. X

31 0 DeSAVE5 Debug handler scratchpad register. X

1. Registers used in memory management.
2. Registers used in exception processing.
3. ASID per-TC. See “EntryHi Register (CP0 Register 10, Select 0)” on page 168.
4. KSU and CU0-3 per-TC. See “Status Register (CP0 Register 12, Select 0)” on page 170.
5. Registers used in debug.

Table E.2 CP0 Register Field Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED
behavior.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropri-
ate state, respectively, on power-up.
If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified
in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value to
this field without affecting hardware behavior. Software
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE
value except after a hardware update done under the
conditions specified in the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

Table E.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc
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E.2.1 Index Register (CP0 Register 0, Select 0)

The Index register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure E-1 Index Register Format

E.2.2 Random Register (CP0 Register 1, Select 0)

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry available to be written by a
TLB Write Random operation.

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must be
zero. Software writes of non-zero values to this field
may result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

31 30 6 5 0

P 0 Index

Table E.3 Index Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

P 31 Probe Failure. Set to 1 when the previous TLBProbe (TLBP)
instruction failed to find a match in the TLB.

R/W Undefined

0 30:6 Must be written as zeros; returns zeros on reads. 0 0

Index 5:0 Index to the TLB entry affected by the TLBRead and TLBWrite
instructions.
For 16 or 32 entry TLBs, behavior is undefined if index points to a
non-existent entry.

R/W Undefined

Table E.2 CP0 Register Field Types (Continued)

Notation Hardware Interpretation Software Interpretation
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• An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one almost every clock, wrapping after the value in the Wired register is
reached. To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is
used which prevents the decrement pseudo-randomly.

The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register
is written.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure E-2 Random Register Format

E.2.3 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.
For a TLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages.
The contents of the EntryLo0 and EntryLo1 registers are undefined after an address error, TLB invalid, TLB modi-
fied, or TLB refill exception. These registers are only valid when the TLB-based memory management unit is
present. They are reserved if the FM-style MMU is present.

Figure E-3 EntryLo0, EntryLo1 Register Format

31 6 5 0

0 Random

Table E.4 Random Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Random 5:0 TLB Random Index R TLB Entries - 1

31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table E.5 EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on reads. R 0

0 29:26 These 4 bits are normally part of the PFN, however, since the
core supports only 32 bits of physical address, the PFN is only
20 bits wide; therefore, bits 29:26 of this register must be writ-
ten with zeros.

R 0

PFN 25:6 Page Frame Number: Contributes to the definition of the high-
order bits of the physical address. The PFN field corresponds to
bits 31..12 of the physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table E.6. R/W Undefined
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Table E.6 lists the encoding of the C field of the EntryLo0 and EntryLo1 registers and the K0 field of the Config reg-
ister.

E.2.4 Context Register (CP0 Register 4, Select 0)

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register but is organized in such a way that the operating system can
directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception.

Figure E-4 Context Register Format

D 2 “Dirty” or write-enable bit: Indicates that the page has been
written, and/or is writable. If this bit is a one, then stores to the
page are permitted. If this bit is a zero, then stores to the page
cause a TLB Modified exception.

R/W Undefined

V 1 Valid bit: Indicates that the TLB entry, and thus the virtual page
mapping are valid. If this bit is a one, then accesses to the page
are permitted. If this bit is a zero, then accesses to the page
cause a TLB Invalid exception

R/W Undefined

G 0 Global bit: On a TLB write, the logical AND of the G bits in
both the EntryLo0 and EntryLo1 registers become the G bit in
the TLB entry. If the TLB entry G bit is a one, then the ASID
comparisons are ignored during TLB matches. On a read from
a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflect
the state of the TLB G bit.

R/W Undefined

Table E.6 Cache Coherency Attributes

C[5:3] Value Cache Coherency Attribute

0 Cacheable, non-coherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, non-coherent, write-back, write allocate

6 Reserved

7 Uncached Accelerated

31 23 22 4 3 0

PTEBase BadVPN2 0

Table E.5 EntryLo0, EntryLo1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)
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E.2.5 PageMask Register (CP0 Register 5, Select 0)

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown inTable E.9.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure E-5 PageMask Register Format

Table E.7 Context Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

PTEBase 31:23 This field is for use by the operating system and is normally
written with a value that allows the operating system to use the
Context Register as a pointer into the current PTE array in
memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It contains bits
VA31:13 of the virtual address that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on reads. 0 0

31 29 28 13 12 0

0 Mask 0

Table E.8 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
12:0

Ignored on write; returns zero on read. R 0

Mask 28:13 The Mask field is a bit mask in which a “1” bit indicates that
the corresponding bit of the virtual address should not partici-
pate in the TLB match.

R/W Undefined

Table E.9 Values for the Mask Field of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table E.9, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures.

E.2.6 Wired Register (CP0 Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure E-6. The width of the Wired field is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register is reset to zero by a Reset exception. Writing the Wired register causes the Random register to
reset to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to
the Wired register.

This register is only valid with a TLB. It is reserved if the FM is implemented.

Figure E-6 Wired and Random Entries in the TLB

Figure E-7 Wired Register Format

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 6 5 0

0 Wired

Table E.9 Values for the Mask Field of the PageMask Register (Continued)

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

R
an

do
m

W
ire

d

Entry 0

Entry 10

Entry n-1

Wired Register 10
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E.2.7 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure E-8 HWREna Register Format

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access to the
Count register, access to that register may be individually disabled and the return value can be virtualized by the
operating system.

E.2.8 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid

• TLB Modified

Table E.10 Wired Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Wired 5:0 TLB wired boundary.
For 16 and 32 entry TLBs, behavior is undefined if value is set
to a value larger than last TLB entry.

R/W 0

31 4 3 0

0 Mask

Table E.11 HWREna Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:4 Must be written with zero; returns zero on read 0 0

Mask 3:0 Each bit in this field enables access by the RDHWR instruction
to a particular hardware register (which may not be an actual
register). If bit ‘n’ in this field is a 1, access is enabled to hard-
ware register ‘n’. If bit ‘n’ of this field is a 0, access is disabled.
See the RDHWR instruction for a list of valid hardware regis-
ters.

R/W 0
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The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

Figure E-9 BadVAddr Register Format

E.2.9 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. If enabled, the counter increments every other clock. Setting
the DC bit in the Cause register to 0 enables counting.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues
incrementing while the processor is in debug mode.

Figure E-10 Count Register Format

E.2.10 EntryHi Register (CP0 Register 10, Select 0)

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

31 0

BadVAddr

Table E.12 BadVAddr Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

BadVAddr 31:0 Bad virtual address. R Undefined

31 0

Count

Table E.13 Count Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined
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The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure E-11 EntryHi Register Format

E.2.11 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare regis-
ter is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure E-12 Compare Register Format

31 13 12 8 7 0

VPN2 0 ASID

Table E.14 EntryHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VPN2 31:13 VA31..13 of the virtual address (virtual page number / 2). This

field is written by hardware on a TLB exception or on a TLB
read, and is written by software before a TLB write.

R/W Undefined

0 12:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Address space identifier. This field is written by hardware on a
TLB read and by software to establish the current ASID value
for TLB write and against which TLB references match each
entry’s TLB ASID field.

R/W Undefined

31 0

Compare

Table E.15 Compare Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined
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E.2.12 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

E.2.12.1 Operating Modes

Debug Mode

The processor is operating in Debug Mode if the DM bit in the CP0 Debug register is a one. If the processor is run-
ning in Debug Mode, it has full access to all resources that are available to Kernel Mode operation.

Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero and any of the following
three conditions is true:

• The KSU field in the CP0 Status register contains 2#00

• The EXL bit in the Status register is one

• The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

Supervisor Mode

The processor is operating in Supervisor Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#01

• The EXL and ERL bits in the Status register are both zero

Supervisor mode is not supported with the Fixed Mapping MMU.
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User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#10

• The EXL and ERL bits in the Status register are both zero

E.2.12.2 Coprocessor Accessibility

The Status register CU bits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

Figure E-13 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX R BEV TS SR NMI 0 CEE R IM7..IM2 IM1..IM0 R KSU ERL EXL IE

IPL

Table E.16 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CU3 31 Reserved. R 0

CU2 30 Controls access to Coprocessor 2

This bit can only be written when a coprocessor 2 unit is
present. This bit cannot be written and will read as 0 if copro-
cessor 2 unit is not presen.

R/W Undefined

CU1 29 Controls access to Coprocessor 1

This bit can only be written when the Floating Point Unit is
present (34Kf core); in the 34Kc core, this bit cannot be written
and will read as 0.

R/W Undefined

CU0 28 Controls access to coprocessor 0

Coprocessor 0 is always usable when the processor is running
in kernel mode, independent of the state of the CU0 bit.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is avail-
able on the external core interface as the SI_RP signal.

R/W 0

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed
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FR 26 This bit is used to control the floating point register mode for
64-bit floating point units:

This bit must be ignored on write and read as zero under the
following conditions
• No floating point unit is implemented
• 64-bit floating point unit is not implemented

R/W 0

RE 25 Used to enable reverse-endian memory references while the
processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor Mode
references are affected by the state of this bit.

R/W Undefined

MX 24 Enables access to DSP ASE resources. An attempt to execute
any DSP ASE instruction before this bit has been set to 1 will
cause a DSP State Disabled exception.

R

R 23 Reserved. This field is ignored on write and read as 0. R 0

BEV 22 Controls the location of exception vectors: R/W 1

TS 21 TLB shutdown. Indicates that the TLB has detected a match on
multiple entries. This bit is set if a TLBWI or TLBWR instruc-
tion is issued that would cause a TLB shutdown condition if
allowed to complete. A machine check exception is also issued.
This bit is reserved if the TLB is not implemented.
Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition

R/W0 0

SR 20 Indicates that the entry through the reset exception vector was
due to a Soft Reset. Soft Reset is not supported on this proces-
sor and this bit is not writable and will always read as 0

R 0

Table E.16 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit datatypes are stored in even-
odd pairs of registers

1 Floating point registers can contain any
datatype

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Encoding Meaning

0 Normal

1 Bootstrap
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NMI 19 Indicates that the entry through the reset exception vector was
due to an NMI:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W0 1 for NMI; 0 oth-
erwise

0 18 Must be written as zero; returns zero on read. 0 0

CEE 17 CorExtend Enable: This bit is sent to the CorExtend block to be
used to enable the CorExtend block. The usage of this signal by
a CorExtend block is implementation dependent.
This bit is reserved if CorExtend is not present.

R/W Undefined

R 16 Reserved. Ignored on write and read as zero. R 0

IM7..IM2 15:10 Interrupt Mask: Controls the enabling of each of the hardware
interrupts. An interrupt is taken if interrupts are enabled and the
corresponding bits are set in both the Interrupt Mask field of the
Status register and the Interrupt Pending field of the Cause
register and the IE bit is set in the Status register.

In implementations of Release 2 of the Architecture in which
EIC interrupt mode is enabled (Config3[VEIC] = 1), these bits
take on a different meaning and are interpreted as the IPL field,
described below.

R/W Undefined

IPL 15:10 Interrupt Priority Level: In implementations of Release 2 of the
Architecture in which EIC interrupt mode is enabled
(Config3[VEIC] = 1), this field is the encoded (0..63) value of
the current IPL. An interrupt will be signalled only if the
requested IPL is higher than this value.
If EIC interrupt mode is not enabled (Config3[VEIC] = 0),
these bits take on a different meaning and are interpreted as the
IM7..IM2 bits, described above.

R/W Undefined

IM1..IM0 9:8 Interrupt Mask: Controls the enabling of each of the software
interrupts.

In implementations of Release 2 of the Architecture in which
EIC interrupt mode is enabled (Config3[VEIC] = 1), these bits
are writable, but have no effect on the interrupt system.

R/W Undefined

R 7:5 Reserved. This field is ignored on write and read as 0. R 0

Table E.16 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Not NMI (Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled
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KSU 4:3 This field denotes the base operating mode of the processor.
The encoding of this field is:

Note that the processor can also be in kernel mode if ERL or
EXL is set, regardless of the state of the KSU field.

R/W Undefined

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset,
NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped and
uncached region. This allows main memory to be accessed in
the presence of cache errors. The operation of the processor
is UNDEFINED if the ERL bit is set while the processor is
executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• TLB Refill exceptions use the general exception vector

instead of the TLB Refill vector.
• EPC, Cause[BD] and SRSCtl (implementations of Release

2 of the Architecture only) will not be updated if another
exception is taken

R/W Undefined

Table E.16 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

00 Base mode is Kernel Mode

01 Base mode is Supervisor Mode

10 Base mode is User Mode

11 Reserved

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level



E.2 CP0 Register Descriptions

Programming the MIPS32® 34K™ Core Family, Revision 01.30 175

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

E.2.13 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure E-14 IntCtl Register Format

IE 0 Interrupt Enable: Acts as the master enable for software and
hardware interrupts:

In Release 2 of the Architecture, this bit may be modified sepa-
rately via the DI and EI instructions.

R/W Undefined

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

Table E.17 IntCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this
field specifies the IP number to which the Timer Interrupt
request is merged, and allows software to determine whether to
consider Cause[TI] for a potential interrupt.

The value of this bit is set by the static input, SI_IPTI[2:0].
This allows external logic to communicate the specific SI_Int
hardware interrupt pin to which the SI_TimerInt signal is
attached.
The value of this field is not meaningful if External Interrupt
Controller Mode is enabled. The external interrupt controller is
expected to provide this information for that interrupt mode.

R Externally Set

Table E.16 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5
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E.2.14 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure E-15 SRSCtl Register Format

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this
field specifies the IP number to which the Performance Counter
Interrupt request is merged, and allows software to determine
whether to consider Cause[PCI] for a potential interrupt.
The value of this field is not meaningful if External Interrupt
Controller Mode is enabled. The external interrupt controller is
expected to provide this information for that interrupt mode.

R Externally Set

VS 9:5 Vector Spacing. If vectored interrupts are implemented (as
denoted by Config3[VInt] or Config3[VEIC]), this field speci-
fies the spacing between vectored interrupts.

All other values are reserved. The operation of the processor is
UNDEFINED if a reserved value is written to this field.

R/W 0

0 25:10, 4:0 Must be written as zero; returns zero on read. 0 0

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table E.18 SRSCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set
number that is implemented by this processor. A value of zero
in this field indicates that only the normal GPRs are imple-
mented.
Possible values of this field for the 34K processor are:The value
in this field also represents the highest value that can be written
to the ESS, EICSS, PSS, and CSS fields of this register, or to any
of the fields of the SRSMap register. The operation of the pro-
cessor is UNDEFINED if a value larger than the one in this
field is written to any of these other fields.

R Preset

Table E.17 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding
Spacing Between

Vectors (hex)
Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512
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EICSS 21:18 EIC interrupt mode shadow set. If Config3[VEIC] is 1 (EIC
interrupt mode is enabled), this field is loaded from the external
interrupt controller for each interrupt request and is used in
place of the SRSMap register to select the current shadow set
for the interrupt. If Config3[VEIC] is 0, this field returns zero
on read.

R Undefined

ESS 15:12 Exception Shadow Set. This field specifies the shadow set to
use on entry to Kernel Mode caused by any exception other
than a vectored interrupt.
The operation of the processor is UNDEFINED if software
writes a value into this field that is greater than the value in the
HSS field.

R/W 0

PSS 9:6 Previous Shadow Set. If GPR shadow registers are imple-
mented, and with the exclusions noted in the next paragraph,
this field is copied from the CSS field when an exception or
interrupt occurs. An ERET instruction copies this value back
into the CSS field if Status[BEV] = 0.
This field is not updated on any exception which sets
Status[ERL] to 1 (i.e., Reset, Soft Reset, NMI, cache error), an
entry into EJTAG Debug mode, or any exception or interrupt
that occurs with Status[EXL ]= 1, or Status[BEV] = 1. This
field is not updated on an exception that occurs while
Status[ERL] = 1.
The operation of the processor is UNDEFINED if software
writes a value into this field that is greater than the value in the
HSS field.

R/W 0

CSS 3:0 Current Shadow Set. If GPR shadow registers are implemented,
this field is the number of the current GPR set. With the exclu-
sions noted in the next paragraph, this field is updated with a
new value on any interrupt or exception, and restored from the
PSS field on an ERET. Table E.19 describes the various sources
from which the CSS field is updated on an exception or inter-
rupt.
This field is not updated on any exception which sets
Status[ERL] to 1 (i.e., Reset, Soft Reset, NMI, cache error), an
entry into EJTAG Debug mode, or any exception or interrupt
that occurs with Status[EXL ]= 1, or Status[BEV] = 1. Neither
is it updated on an ERET with Status[ERL] = 1 or
Status[BEV] = 1. This field is not updated on an exception that
occurs while Status[ERL] = 1.
The value of CSS can be changed directly by software only by
writing the PSS field and executing an ERET instruction.

R 0

0 31:30,
25:22,
17:16,

11:10, 5:4

Must be written as zeros; returns zero on read. 0 0

Table E.18 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits
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E.2.15 SRSMap Register (CP0 Register 12, Select 3)

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (Cause[IV] = 0 or IntCtl[VS] = 0). In such cases, the shadow set number comes from
SRSCtl[ESS].

If SRSCtl[HSS] is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtl[HSS].

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure E-16 SRSMap Register Format

Table E.19 Sources for new SRSCtl[CSS] on an Exception or Interrupt

Exception Type Condition SRSCtl[CSS] Source Comment

Exception All SRSCtl[ESS]

Non-Vectored Interrupt Cause[IV] = 0 SRSCtl[ESS] Treat as exception

Vectored Interrupt Cause[IV] = 1 and
Config3[VEIC] = 0 and

Config3[VInt] = 1

SRSMap[VECTNUM] Source is internal map register.

Vectored EIC Interrupt Cause[IV] = 1 and
Config3[VEIC] = 1

SRSCtl[EICSS] Source is external interrupt
controller.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table E.20 SRSMap Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SSV7 31:28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27:24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23:20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19:16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15:12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11:8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7:4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3:0 Shadow register set number for Vector Number 0 R/W 0
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E.2.16 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure E-17 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table E.21 Cause Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a branch
delay slot:

The processor updates BD only if Status[EXL] was zero when
the exception occurred.

R Undefined

TI 30 Timer Interrupt. This bit denotes whether a timer interrupt is
pending (analogous to the IP bits for other interrupt types):

The state of the TI bit is available on the external core interface
as the SI_TimerInt signal.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hardware
on every exception, but is UNPREDICTABLE for all excep-
tions except for Coprocessor Unusable.

R Undefined

DC 27 Disable Count register. In some power-sensitive applications,
the Count register is not used and is the source of meaningful
power dissipation. This bit allows the Count register to be
stopped in such situations.

R/W 0

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register
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PCI 26 Performance Counter Interrupt: This bit denotes whether a per-
formance counter interrupt is pending (analogous to the IP bits
for other interrupt types):

The state of the PCI bit is available on the external core inter-
face as the SI_PCInt signal.

R Undefined

IV 23 Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

If the Cause[IV] is 1 and Status[BEV] is 0, the special inter-
rupt vector represents the base of the vectored interrupt table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because
Status[EXL] or Status[ERL] were a one at the time the watch
exception was detected. This bit both indicates that the watch
exception was deferred, and causes the exception to be initiated
once Status[EXL] and Status[ERL] are both zero. As such,
software must clear this bit as part of the watch exception han-
dler to prevent a watch exception loop.
Software should not write a 1 to this bit when its value is a 0,
thereby causing a 0-to-1 transition. If such a transition is caused
by software, it is UNPREDICTABLE whether hardware
ignores the write, accepts the write with no side effects, or
accepts the write and initiates a watch exception once
Status[EXL] and Status[ERL] are both zero.

R/W Undefined

IP7..IP2 15:10 Indicates an interrupt is pending:

If EIC interrupt mode is not enabled (Config3[VEIC] = 0),
timer interrupts are combined in a system-dependent way with
any hardware interrupt. If EIC interrupt mode is enabled
(Config3[VEIC] = 1), these bits take on a different meaning
and are interpreted as the RIPL field, described below.

R Undefined

Table E.21 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No performance counter interrupt is pending

1 Performance counter interrupt is pending

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0
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RIPL 15:10 Requested Interrupt Priority Level: If EIC interrupt mode is
enabled (Config3[VEIC] = 1), this field is the encoded (0..63)
value of the requested interrupt. A value of zero indicates that
no interrupt is requested.
If EIC interrupt mode is not enabled (Config3[VEIC] = 0),
these bits take on a different meaning and are interpreted as the
IP7..IP2 bits, described above.

R Undefined

IP1..IP0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt controller for
prioritization in EIC interrupt mode with other interrupt
sources. The state of these bits is available on the external core
interface as the SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Exception code - see Table E.22 R Undefined

0 25:24,
21:16, 7,

1:0

Must be written as zero; returns zero on read. 0 0

Table E.22 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception. If an SDBBP instruction is executed while the
processor is running in EJTAG Debug Mode, this value is written to
the Debug[DExcCode] field to denote an SDBBP in Debug Mode.

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

Table E.21 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0
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E.2.17 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set,
however, the register can still be written via the MTC0 instruction.

In processors that implement the MIPS16 ASE, a read of the EPC register (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16 16#10 IS1 Coprocessor 2 implementation specific exception

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Precise Coprocessor 2 exception

19-22 16#13-16#16 - Reserved

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine check

30 16#1e CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If a cache error
occurs while in Debug Mode, this code is written to the
Debug[DExcCode] field to indicate that re-entry to Debug Mode
was caused by a cache error.

31 16#1f - Reserved

Table E.22 Cause Register ExcCode Field (Continued)

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal
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That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower bit
of the GPR.

Figure E-18 EPC Register Format

E.2.18 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure E-19 PRId Register Format

31 0

EPC

Table E.23 EPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

31 24 23 16 15 8 7 0

CompanyOption Company ID Processor ID Revision

Table E.24 PRId Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Company
Option

31:24 Implementation specific values R Preset

Company
ID

23:16 Identifies the company that designed or manufactured the pro-
cessor. In the 34K this field contains a value of 1 to indicate
MIPS Technologies, Inc.

R 1

Processor
ID

15:8 Identifies the type of processor. This field allows software to
distinguish between the various types of MIPS Technologies
processors.

R 0x93
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E.2.19 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when
Status[BEV] equals 0, and a read-only CPU number value that may be used by software to distinguish different pro-
cessors in a multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Status[BEV] is 0. The exception vector base address comes from the fixed defaults when Status[BEV]
is 1, or for any EJTAG Debug exception. The reset state of bits 31:12 of the EBase register initialize the exception
base register to 16#8000.0000, providing backward compatibility with Release 1 implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error
exceptions so the exception handler will be executed from the uncached kseg1 segment.

If the value of the exception base register is to be changed, this must be done with Status[BEV] equal 1. The opera-
tion of the processor is UNDEFINED if the Exception Base field is written with a different value when Status[BEV]
is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KBbyte page boundary.

Figure E-20 EBase Register Format

Revision 7:0 Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type.
This field is broken up into the following three subfields:

R Preset

31 30 29 12 11 10 9 0

1 0 Exception Base 0 CPUNum

Table E.24 PRId Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major
revisions of the processor core

4:2 Minor
Revision

This number is increased on each
incremental revision of the proces-
sor and reset on each new major
revision

1:0 Patch
Level

If a patch is made to modify an older
revision of the processor, this field
will be incremented
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E.2.20 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant. The K0, KU, and K23 fields must
be initialized by software in the Reset exception handler, if the reset value is not desired.

Figure E-21 Config Register Format — Select 0

Table E.25 EBase Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

1 31 This bit is ignored on write and returns one on read. R 1

Exception
Base

29:12 In conjunction with bits 31..30, this field specifies the base
address of the exception vectors when Status[BEV] is zero.

R/W 0

CPUNum 9:0 This field specifies the number of the CPU in a multi-processor
system and can be used by software to distinguish a particular
processor from the others. The value in this field is set by the
SI_CPUNum[9:0] static input pins to the core. In a single pro-
cessor system, this value should be set to zero.

R Externally Set

0 30, 11:10 Must be written as zero; returns zero on read. 0 0

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU ISP DSP UDI SB 0 MM 0 BM BE AT AR MT 0 K0

Table E.26 Config Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hard-wired to ‘1’ to indicate the presence of the
Config1 register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations.
Refer to Table E.27 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

KU 27:25 This field controls the cacheability of the kuseg and useg
address segments in FM implementations.
Refer to Table E.27 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

ISP 24 I-side ScratchPad RAM present R Preset

DSP 23 D-side ScratchPad RAM present R Preset

UDI 22 This bit indicates that CorExtend User Defined Instructions
have been implemented.

R Preset

Encoding Description

0 No User Defined Instructions are imple-
mented

1 User Defined Instructions are implemented
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SB 21 Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE input pin.

R Externally Set

MM 18 This bit indicates whether write-through merging is enabled in
the 32 byte collapsing write buffer.

R/W 1

BM 16 Burst order. Set via SI_SBlock input pin. R Externally Set

BE 15 Indicates the endian mode in which the processor is running.
Set via SI_Endian input pin.

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field is
always 00 to indicate the MIPS32 architecture.

R 00

AR 12:10 Architecture revision level. This field is always 001 to indicate
MIPS32 Release 2.

R 001

MT 9:7 MMU Type: R Preset

K0 2:0 Kseg0 coherency algorithm. Refer to Table E.27 for the field
encoding.

R/W 010

0 20:19, 17,
6:3

Must be written as zeros; returns zeros on reads. 0 0

Table E.26 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No reserved byte enables on OCP interface

1 Only simple byte enables allowed on OCP
interface

Encoding Description

0 No Merging

1 Merging allowed

Encoding Description

0 Sequential

1 SubBlock

Encoding Description

0 Little endian

1 Big endian

Encoding Description

0 Release 1

1 Release 2

2:7 Reserved

Encoding Description

1 Standard TLB

3 Fixed Mapping

0, 2, 4:7 Reserved
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E.2.21 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities
present on the core. All fields in the Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line
size, and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, no cache is implemented.

Figure E-22 Config1 Register Format

Table E.27 Cache Coherency Attributes

K0(2:0) Value Cache Coherency Attribute

0 Cacheable, non-coherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, non-coherent, write-back, write allocate

6 Reserved

7 Uncached Accelerated

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table E.28 Config1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hard-wired to ‘1’ to indicate the presence of the
Config2 register.

R 1

MMU
Size

30:25 This field contains the number of entries in the TLB minus one.
The field is read as 0 decimal if the TLB is not implemented

R Preset

IS 24:22 This field contains the number of instruction cache sets per
way. The corresponding total instruction cache size is shown in
parentheses

R Preset

Encoding Description

0x0 64 (8KB)

0x1 128 (16KB)

0x2 256 (32KB)

0x3 512 (64KB)

0x4:0x7 Reserved
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IL 21:19 This field contains the instruction cache line size The cache line
size is fixed at 32 bytes when the ICache is present. A value of
0 indicates no ICache.

R Preset

IA 18:16 This field contains the level of instruction cache associativity
This field is fixed at 4-way set associative

R 0x3

DS 15:13 This field contains the number of data cache sets per way. The
corresponding total data cache size is shown in parentheses

R Preset

DL 12:10 This field contains the data cache line size. The cache line size
is fixed at 32 bytes when a Dcache is present. This field reads 0
when a Dcache is not present.

R Preset

DA 9:7 This field contains the type of set associativity for the data
cache The associativity is fixed at 4-way.

R 0x3

Table E.28 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0x0 No ICache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0:0x2 Reserved

0x3 4-way

0x4:0x7 Reserved

Encoding Description

0x0 64 (8KB)

0x1 128 (16KB)

0x2 256 (32KB)

0x3 512 (64KB)

0x4:0x7 Reserved

Encoding Description

0x0 No DCache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0:0x2 Reserved

0x3 4-way

0x4:0x7 Reserved
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E.2.22 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities informa-
tion. Config2 is allocated for showing the configuration of level 2/3 caches. L2 values reflect the configuration infor-
mation input from the L2 module. L3 fields are reset to 0 because L3 caches are not supported by the 34K core. All
fields in the Config2 register are read-only.

Figure E-23 Config2 Register Format

C2 6 Coprocessor 2 present. R Preset

MD 5 MDMX implemented. R 0

PC 4 Performance Counter registers implemented. R 1

WR 3 Watch registers implemented. R 1

CA 2 Code compression (MIPS16) implemented. R 1

EP 1 EJTAG present: This bit is always set to indicate that the core
implements EJTAG.

R 1

FP 0 FPU implemented. R Preset

31 30 28 27 24 23 20 19 16 15 13 12 8 7 4 3 0

M TU TS TL TA SU SS SL SA

Table E.29 Config2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hard-wired to ‘1’ to indicate the presence of the
Config3 register.

R 1

TU 30:28 Implementation specific tertiary cache control. Tertiary cache
not supported

R 0

TS 27:24 Tertiary cache sets per way. Tertiary cache not supported R 0

TL 23:20 Tertiary cache line size. Tertiary cache not supported R 0

Table E.28 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 Coprocessor2 not present

1 Coprocessor2 present

Encoding Description

0 No Watch registers are present

1 One or more Watch registers are present

Encoding Description

0 No MIPS16 present

1 MIPS16 is implemented



 CP0 Registers of the 34K Core

190 Programming the MIPS32® 34K™ Core Family, Revision 01.30

Copyright © 2004-2006 MIPS Technologies Inc. All rights reserved.

E.2.23 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

TA 19:16 Tertiary cache associativity. Tertiary cache not supported R 0

SU 15:13 Reserved R 0

SS 12:8 Secondary cache sets per way R Preset

SL 7:4 Secondary cache line size R Preset

SA 3:0 Secondary cache associativity R Preset

Table E.29 Config2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

Encoding Sets Per Way

0 No cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Sets Per Way

0 Direct mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved
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Figure E-24 Config3 Register Format
31 30 11 10 9 7 6 5 4 3 2 1 0

M 0 DSPP 0 VEIC VInt SP 0 MT SM TL

Table E.30 Config3 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

M 31 This bit is reserved to indicate if a Config4 register is present. R 0

DSPP 10 DSP Present. Indicates whether support for the DSP ASE is
implemented.

R Preset

VEIC 6 Support for an external interrupt controller is implemented.

The value of this bit is set by the static input, SI_EICPresent.
This allows external logic to communicate whether an external
interrupt controller is attached to the processor or not.

R Externally Set

VInt 5 Vectored interrupts implemented. This bit indicates whether
vectored interrupts are implemented.

On the 34K core, this bit is always a 1 since vectored interrupts
are implemented.

R 1

SP 4 Small (1KByte) page support is implemented, and the
PageGrain register exists. This bit will always be 0 since
small pages are not supported.

R 0

SM 1 This bit indicates whether the SmartMIPS™ ASE is imple-
mented. Since SmartMIPS is not present on the 34K core, this
bit will always be 0.

R 0

Encoding Description

0 Support for EIC interrupt mode is not imple-
mented

1 Support for EIC interrupt mode is imple-
mented

Encoding Description

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Encoding Description

0 Small page support is not implemented

1 Small page support is implemented

Encoding Description

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented
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E.2.24 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are writ-
able to disable certain performance enhancing features within the core.

Figure E-25 Config7 Register Format

TL 0 Trace Logic implemented. This bit indicates whether MIPS
trace support is implemented.

R Preset

0 30:11, 9:7,
3

Must be written as zeros; returns zeros on read 0 0

31 18 17 16 15 9 8 7 6 5 4 3 2 1 0

0 FPR AR 0 ES 0 NBLSU ULB BP RPS BHT SL

Table E.31 Config7 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:1, 15:9,
7

These bits are unused and should be written as 0. R 0

FPR 17 Floating Point Ratio: Indicates clock ratio between integer core
and floating point unit on 34Kf cores. Reads as 0 on 34Kc
cores.

R Based on HW
present

AR 16 Alias removed: This bit indicates that the data cache is orga-
nized to avoid virtual aliasing problems. This bit is only set if
the data cache config and MMU type would normally cause
aliasing - i.e., only for the 32KB data cache and TLB-based
MMU.

R Based on HW
present

ES 8 Externalize Sync: If this bit is set, the SYNC instruction will
cause a SYNC specific transactions to go out on the external
bus. If this bit is cleared, no transaction will go out, but all
SYNC handling internal to the core will still be performed.
Refer to SYNC instruction description for more information.

R/W 0

Table E.30 Config3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Description

0 Trace logic is not implemented

1 Trace logic is implemented

Encoding Description

0 FP clock frequency is the same as the integer
clock

1 FP clock frequency is one-half the integer
clock
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E.2.25 LLAddr Register (CP0 Register 17, Select 0)

Figure E-26

E.2.26 WatchLo Register (CP0 Register 18, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero
in the Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXL and ERL bits are zero.

There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruc-
tion addresses only. Thus, only the I bit is writable, the R and W bits are tied to 0. The other two (select 2, 3) are asso-
ciated with data addresses and can only be used for R or W watchpoints.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match.

Figure E-27 WatchLo Register Format

NBLSU 5 Non-Blocking LSU: Writing 1 to this field will lock the LSU
and ALU pipelines together. This forces LSU pipeline stalls to
also stall the ALU pipeline.

R/W 0

ULB 4 Uncached Loads Blocking: Writing 1 to this field will make all
uncached loads blocking.

R/W 0

BP 3 Branch Prediction: Writing 1 to this field will disable all specu-
lative branch prediction. The fetch unit will wait for a branch to
be resolved before fetching the target or fall-through path.

R/W 0

RPS 2 Return Prediction Stack: Writing 1 to this field will disable the
use of the Return Prediction Stack. Returns (JR ra) will stall
instruction fetch until the destination is calculated.

R/W 0

BHT 1 Branch History Table: Writing 1 to this field will disable the
dynamic branch prediction. Branches will be statically pre-
dicted taken.

R/W 0

SL 0 Scheduled Loads: Writing 1 to this field will make load misses
blocking.

R/W 0

31 3 2 1 0

VAddr I R W

Table E.31 Config7 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits
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E.2.27 WatchHi Register (CP0 Register 19, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, then the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXL and ERL bits are zero.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, a Global (G) bit, and an optional address mask. If the G bit is 1, then any virtual address reference that matches
the specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for which
the ASID value in the WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The
optional mask field provides address masking to qualify the address specified in WatchLo.

There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruc-
tion addresses only. Thus, only the I bit is meaningful, the R and W bits are tied to 0. The other two (select 2, 3) are
associated with data addresses and can only be used for R or W watchpoints.

Figure E-28 WatchHi Register Format

Table E.32 WatchLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VAddr 31:3 This field specifies the virtual address to match. Note that this
is a doubleword address, since bits [2:0] are used to control the
type of match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for instruction
fetches that match the address.

R/W 0

R 1 If this bit is set, watch exceptions are enabled for loads that
match the address.

R/W 0

W 0 If this bit is set, watch exceptions are enabled for stores that
match the address.

R/W 0

31 30 29 24 23 16 15 12 11 3 2 0

M G 0 ASID 0 Mask I R W

Table E.33 WatchHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 Indicates the presence of additional Watch registers. R Preset

G 30 If this bit is one, any address that matches that specified in the
WatchLo register causes a watch exception. If this bit is zero,
the ASID field of the WatchHi register must match the ASID
field of the EntryHi register to cause a watch exception.

R/W Undefined

ASID 23:16 ASID value which is required to match that in the EntryHi reg-
ister if the G bit is zero in the WatchHi register.

R/W Undefined
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E.2.28 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when a normal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

Figure E-29 Debug Register Format

Mask 11:3 Bit mask that qualifies the address in the WatchLo register.
Any bit in this field that is a set inhibits the corresponding
address bit from participating in the address match.

R/W Undefined

I 2 This bit is set by hardware when an instruction fetch condition
matches the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accomplished by
writing a 1 to the bit.

W1C Undefined

R 1 This bit is set by hardware when a load condition matches the
values in this watch register pair. When set, the bit remains set
until cleared by software, which is accomplished by writing a 1
to the bit.

W1C Undefined

W 0 This bit is set by hardware when a store condition matches the
values in this watch register pair. When set, the bit remains set
until cleared by software, which is accomplished by writing a 1
to the bit.

W1C Undefined

0 29:24,
15:12

Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDBSImpr

Table E.33 WatchHi Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)
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18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr EJTAGver DExcCode NoSSt SSt R Offline DINT DIB DDBS DDBL DBp DSS

Table E.34 Debug Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBD 31 Indicates whether the last debug exception or exception in
debug mode, occurred in a branch delay slot:

R Undefined

DM 30 Indicates that the processor is operating in debug mode: R 0

NoDCR 29 Indicates whether the dseg memory segment is present: R 0

LSNM 28 Controls access of load/store between dseg and main memory: R/W 0

Doze 27 Indicates that the processor was in any kind of low power mode
when a debug exception occurred:

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped when
the debug exception occurred:

R Undefined

CountDM 25 Indicates the Count register behavior in debug mode. R/W 1

Encoding Description

0 Not in delay slot

1 In delay slot

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

Encoding Description

0 dseg is present

1 No dseg present

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 Load/stores in dseg address range goes to
main memory

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug
exception occurred

Encoding Description

0 Internal system bus clock stopped

1 Internal system bus clock running

Encoding Description

0 Count register stopped in debug mode

1 Count register is running in debug mode
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IBusEP 24 Imprecise instruction fetch Bus Error exception Pending: All
instruction bus errors are precise on the 34K core so this bit
will always read as 0.
Set when an instruction fetch bus error event occurs or if a 1 is
written to the bit by software. Cleared when a Bus Error excep-
tion on instruction fetch is taken by the processor, and by reset.
If IBusEP is set when IEXI is cleared, a Bus Error exception on
instruction fetch is taken by the processor, and IBusEP is
cleared.

R 0

MCheckP 23 Indicates that an imprecise Machine Check exception is pend-
ing. Set when a Machine Check exception occurs or if a 1 is
written to the bit by software. Cleared when a machine check
exception is taken by the processor, and by reset. If MCheckP is
set when IEXI is cleared, a Machine Check exception is taken
by the processor, and MCheckP is cleared.

R 0

CacheEP 22 Indicates that an imprecise Cache Error is pending. R/W1 0

DBusEP 21 Data access Bus Error exception Pending: Set when an data bus
error event occurs or if a 1 is written to the bit by software.
Cleared when a Data Bus Error exception is taken by the pro-
cessor, and by reset. If DBusEP is set when IEXI is cleared, a
Data Bus Error exception is taken by the processor, and
DBusEP is cleared.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit: Controls exceptions taken
due to imprecise error indications. Set when the processor takes
a debug exception or exception in debug mode. Cleared by exe-
cution of the DERET instruction; otherwise modifiable by
debug mode software. When IEXI is set, the imprecise error
exception from a bus error on an instruction fetch or data
access, cache error, or machine check is inhibited and deferred
until the bit is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store exception
was taken.

R 0

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load exception
was taken.

R 0

EJTAGver 17:15 EJTAG version. R 011

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. See
Table E.22 for a list of values.
Value is undefined after a debug exception.

R Undefined

NoSST 9 Indicates whether the single-step feature controllable by the SSt
bit is available in this implementation:

R 0

Table E.34 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

3 Version 3.x

Encoding Description

0 Single-step feature available

1 No single-step feature available
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SSt 8 Controls if debug single step exception is enabled:

This is implemented per TC. Global single-step operation of a
VPE can be achieved by setting SSt for all TCs.

R/W 0

Offline 7 Implemented per-TC. When this bit is 1, TC is allowed to exe-
cute only in Debug mode.

R/W 0

R 6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception occurred. Cleared on
exception in debug mode.

R Undefined

DIB 4 Indicates that a debug instruction break exception occurred.
Cleared on exception in debug mode.

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on a store.
Cleared on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on a load.
Cleared on exception in debug mode.

R Undefined

DBp 1 Indicates that a debug software breakpoint exception occurred.
Cleared on exception in debug mode.

R Undefined

Table E.34 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No debug single-step exception enabled

1 Debug single step exception enabled

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Description

0 No debug data exception on a load

1 Debug instruction exception on a load

Encoding Description

0 No debug software breakpoint exception

1 Debug software breakpoint exception
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E.2.29 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

Figure E-30 TraceControl Register Format

DSS 0 Indicates that a debug single-step exception occurred. Cleared
on exception in debug mode.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table E.35 TraceControl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and
the software trace control bits. A value of zero selects the exter-
nal hardware trace block signals, and a value of one selects the
trace control bits in the TraceControl register.

R/W 0

UT 30 This bit is used to indicate the type of user-triggered trace
record. A value of zero implies a user type 1 and a value of one
implies a user type 2.
The actual triggering of a user trace record happens on a write
to the UserTraceData register. This is a 32-bit register for 32-
bit processors and a 64-bit register for 64-bit processors.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero; returns zero
on read.

0 0

TB 27 Trace All Branch. When set to 1, this tells the processor to trace
the PC value for all taken branches, not just the ones whose
branch target address is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the core
trace logic that slow but complete tracing is desired. Hence, the
core tracing logic must not allow a FIFO overflow and discard
trace data. This is achieved by stalling the pipeline when the
FIFO is nearly full, so that no trace records are ever lost.

R/W Undefined

D 25 When set to one, this enables tracing in Debug Mode. For trace
to be enabled in Debug mode, the On bit must be one, and
either the G bit must be one, or the current process ASID must
match the ASID field in this register.
When set to zero, trace is disabled in Debug Mode, irrespective
of other bits.

R/W Undefined

Table E.34 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No debug single-step exception

1 Debug single-step exception
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E 24 When set to one, this enables tracing in Exception Mode. For
trace to be enabled in Exception mode, the On bit must be one,
and either the G bit must be one, or the current process ASID
must match the ASID field in this register.
When set to zero, trace is disabled in Exception Mode, irrespec-
tive of other bits.

R/W Undefined

K 23 When set to one, this enables tracing in Kernel Mode. For trace
to be enabled in Kernel mode, the On bit must be one, and
either the G bit must be one, or the current process ASID must
match the ASID field in this register.
When set to zero, trace is disabled in Kernel Mode, irrespective
of other bits.

R/W Undefined

S 22 When set to one, this enables tracing in Supervisor Mode.For
trace to be enabled in Supervisor mode, the On bit must be one,
and either the G bit must be one, or the current process ASID
must match the ASID field in this register.
When set to zero, trace is disabled in Supervisor Mode, irre-
spective of other bits.
If the processor does not implement Supervisor Mode, this bit
is ignored on write and returns zero on read.

R/W Undefined

U 21 When set to one, this enables tracing in User Mode. For trace to
be enabled in User mode, the On bit must be one, and either the
G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in User Mode, irrespective
of other bits.

R/W Undefined

ASID_M 20:13 This is a mask value applied to the ASID comparison (done
when the G bit is zero). A “1” in any bit in this field inhibits the
corresponding ASID bit from participating in the match. As
such, a value of zero in this field compares all bits of ASID.
Note that the ability to mask the ASID value is not available in
the hardware signal bit; it is only available via the software
control register.
If the processor does not implement the standard TLB-based
MMU, this field is ignored on write and returns zero on read.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit
is one, this field is ignored.
If the processor does not implement the standard TLB-based
MMU, this field is ignored on write and returns zero on read.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all pro-
cesses, provided that other enabling functions (like U, S, etc.,)
are also true.
If the processor does not implement the standard TLB-based
MMU, this field is ignored on write and returns 1 on read. This
causes all match equations to work correctly in the absence of
an ASID.

R/W Undefined

TFCR 3 When asserted, used to trace function call and return instruc-
tions with full PC values.

R/W Undefined

Table E.35 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits
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E.2.30 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB). As such, these fields in the TraceControl2 register will not have valid values
until the TCB asserts these values.

This register is only implemented if the MIPS Trace capability is present.

Figure E-31 TraceControl2 Register Format

TLSM 2 When asserted, used to trace data cache load and store misses
with full PC values, and potentially the data address and value
as well.

R/W Undefined

TIM 1 When asserted, used to trace instruction miss with full PC val-
ues.

R/W Undefined

On 0 This is the master trace enable switch in software control.
When zero, tracing is always disabled. When set to one, tracing
is enabled whenever the other enabling functions are also true.

R/W 0

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2

0 CPUIdV CPUId TCV TCNum Mode ValidModes TBI TBU SyP

Table E.36 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30 Reserved for future use; Must be written as zero; returns zero
on read.

0 0

CPUIdV 29 When set, this bit specifies the VPE defined in CPUId must be
traced. Otherwise, instructions from all VPEs are traced when
other conditions for tracing are valid. This bit is ignored if TCV
is asserted.

R/W

CPUId 28:21 This field specifies the number of the VPE to trace when
CPUIdV is set.

R/W

TCV 20 When set, the TCNum field specifies the number of the TC that
must be traced. Otherwise, instructions from all TCs are traced
when other conditions for tracing are valid.

R/W

TCNum 19:12 Specifies the TC to trace when TCV is set. The right-most bits
only are used.

R/W

Table E.35 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits
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Mode 11:7 These 5 bits provide the same trace mode functions as the
PDI_TraceMode[4:0] signal, and is described here again.
When tracing is turned on, this signal specifies what informa-
tion is to be traced by the core. It uses 5 bits, where each bit
turns on a tracing of a specific tracing when that bit value is a 1.
If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.
On the 34K core PC tracing is always enabled, regardless of the
value on bit 23.ode. The table shows what trace value is turned
on:

R/W Undefined

Valid-
Modes

6:5 This field specifies the subset of tracing that is supported by the
processor.

R Preset

TBI 4 This bit indicates how many trace buffers are implemented by
the TCB, as follows:

This bit is loaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

Table E.36 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Bit Trace the Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store
data

11 Reserved

Encoding Meaning

0 Only one trace buffer is implemented, and the
TBU bit of this register indicates which trace
buffer is implemented

1 Both on-chip and off-chip trace buffers are
implemented by the TCB and the TBU bit of
this register indicates to which trace buffer the
traces is currently written.
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E.2.31 User Trace Data Register (CP0 Register 23, Select 3)

A software write to any bits in the UserTraceData register will trigger a trace record to be written indicating a type
1 or type 2 user format. The type is based on the UT bit in the TraceControl register. This register cannot be written
in consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

This register is only implemented if the MIPS Trace capability is present.

Figure E-32 User Trace Data Register Format

TBU 3 This bit denotes to which trace buffer the trace is currently
being written and is used to select the appropriate interpretation
of the TraceControl2[SyP] field.

This bit is loaded from the PDI_OffChipTB signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

SyP 2:0 The period (in cycles) to which the internal synchronization
counter is reset when tracing is started, or when the synchroni-
zation counter has overflowed.

This field is loaded from the PDI_SyncPeriod signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

31 0

Data

Table E.36 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Trace data is being sent to an on-chip trace
buffer

1 Trace Data is being sent to an off-chip trace
buffer

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212
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E.2.32 TraceIBPC Register (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure E-33 TraceIBPC Register Format

E.2.33 TraceDBPC Register (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present

Table E.37 UserTraceData Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a
user format trace record out of the PDtrace interface that trans-
mits the Data field to trace memory.

R/W 0

31 29 28 27 12 11 9 8 6 5 3 2 0

0 IE 0 IBPC3 IBPC2 IBPC1 IBPC0

Table E.38 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
27:12

Reserved for future implementation R 0/1

IE 28 Used to specify whether the trigger signal from EJTAG instruc-
tion breakpoint should trigger tracing functions or not:

R/W 0

IBPCn 3n-1:3n-3 The three bits are decoded to enable different tracing modes.
Table E.40 shows the possible interpretations. Each set of 3 bits
represents the encoding for the instruction breakpoint n in the
EJTAG implementation, if it exists. If the breakpoint does not
exist then the bits are reserved, read as zero and writes are
ignored.
If bit 27 is zero, bits 3n-1:3n-2 are ignored, and only the bottom
bit 3n-3 is used to start and stop tracing as specified in versions
less than 4.00 of this specification.

R/W 0

Encoding Meaning

0 Disables trigger signals from instruction
breakpoints

1 Enables trigger signals from instruction break-
points
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Figure E-34 TraceDBPC Register Format

E.2.34 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

31 29 28 27 6 5 3 2 0

0 DE 0 DBPC1 DBPC0

Table E.39 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
27:6

Reserved for future implementation R 0/1

DE 28 Used to specify whether the trigger signal from EJTAG data
breakpoint should trigger tracing functions or not:

R/W 0

DBPCn 3n-1:3n-3 The three bits are decoded to enable different tracing modes.
Table E.40 shows the possible interpretations. Each set of 3 bits
represents the encoding for the data breakpoint n in the EJTAG
implementation, if it exists. If the breakpoint does not exist then
the bits are reserved, read as zero and writes are ignored.
If ATE is zero, bits 3n-1:3n-2 are ignored, and only the bottom
bit 3n-3 is used to start and stop tracing as specified in versions
less than 4.00 of this specification.

R/W 0

Table E.40 BreakPoint Control Modes: IBPC and DBP

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If
tracing is already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If
tracing is already turned off then there is no effect.

010 to 111 Not used Reserved for future implementation

Encoding Meaning

0 Disables trigger signals from data breakpoints

1 Enables trigger signals from data breakpoints
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In processors that implement the MIPS16 ASE, a read of the DEPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and writ-
ten to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISAMode field, as follows

DebugExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure E-35 DEPC Register Format

E.2.35 Performance Counter Register (CP0 Register 25, select 0-3)

The 34K processor defines four performance counters and four associated control registers, which are mapped to CP0
register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register accessed by the
instruction, as shown in Table E.42.

31 0

DEPC

Table E.41 DEPC Register Formats

Fields

Description
Read /
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the
instruction that caused the debug exception. If the instruction is
in the branch delay slot, then the virtual address of the immedi-
ately preceding branch or jump instruction is placed in this reg-
ister.
Execution of the DERET instruction causes a jump to the
address in the DEPC.

 R/W Undefined

Table E.42 Performance Counter Register Selects

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

4 Register 2 Control

5 Register 2 Count

6 Register 3 Control
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Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are AND’ed with an interrupt enable bit, IE, of their respective control register, and
then OR’ed together to create the SI_PCI output. This signal is combined with one of the SI_Int pins to signal an
interrupt to the core. Counting is not affected by the interrupt indication. This output is cleared when the counter
wraps to zero, and may be cleared in software by writing a value with bit 31 = 0 to the Performance Counter Count
registers.

Figure E-36 Performance Counter Control Register

7 Register 3 Count

31 30 29 22 21 20 19 16 15 12 11 5 4 3 2 1 0

M 0 TCID MT_EN VPEID 0 Event IE U S K EXL

Table E.43 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31 If this bit is one, another pair of Performance Control and
Counter registers is implemented at a MTC0 or MFC0 select
field value of ‘n+2’ and ‘n+3’.

R 1 for counter 0
0 for counter 1

TCID 29:22 Specifies which TC events should be counted for if per-TC
counting is enabled.

R/W Undefined

MT_EN 21:20 Specifies which events should be counted: R/W Undefined

VPEID 19:16 Specifies which VPE events should be counter for if per-VPE
counting is enabled.

R/W Undefined

Event 11:5 Counter event enabled for this counter. Possible events are
listed in Table 8.3 on page 118.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associ-
ated count register from the interrupt exception request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

S 2 Count in Supervisor Mode. When this bit is set, the specified
event is counted in Supervisor Mode.

R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, count the event in
Kernel Mode when EXL and ERL both are 0.

R/W Undefined

Table E.42 Performance Counter Register Selects

Select[2:0] Register

Encoding Meaning

00 Count events from all TCs & VPEs

01 Count events from all TCs of the VPE speci-
fied in VPEID

10 Count events from the TC specified in TCID

11 Reserved
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The different events which are countable are listed in Section 8.4, "Performance counters" on page 115.

The performance counter resets to a low-power state, in which none of the counters will start counting events until
software has enabled event counting, using an MTC0 instruction to the Performance Counter Control Registers.

Figure E-37 Performance Counter Count Register

E.2.36 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction caches and provides for software testing of the
way-selection and scratchpad RAMs.

Parity protection can be enabled or disabled using the PE bit. When parity is enabled and the PO bit is deasserted, the
CACHE Index Store Tag and Index Store Data operations will internally generate parity to be written into the RAM
arrays. However, when the PO bit is asserted, tag array parity is written using the P bit of the TagLo register and data
array parity is written using the PI/PD bits of ErrCtl.

A CACHE Index Load Tag operation to the instruction cache will update the PCI field with the instruction precode
bits from the data array and the PI field with the parity bits from the data array if parity is supported. A CACHE Index
Load Tag operation to the data cache will cause the PD bits to be updated with the byte parity for the selected word of
the data array if parity is implemented. If parity is disabled or not implemented, the contents of the PI and PD fields
after a CACHE Index Load Tag operation will be 0.

The PCO field can be used for testing the precode bits of the instruction cache data array. When the PCO bit is
cleared, the CACHE Index Store Data instruction will internally generate the precode bits to be written into the
instruction cache data array. However, when the PCO bit is set, the CACHE Index Store Data instruction will write
the value in the PCI field to the precode bits in the data array. Setting an illegal value in the precode bits will cause
unpredictable behavior. This mechanism should only be used for software testing of the cache arrays. Furthermore,
the cache should be flushed after testing.

The way- selection RAM test mode is enabled by setting the WST bit. This mode is intended for software testing of
the way-selection RAM and data RAM. It modifies the functionality of the CACHE Index Load Tag and Index Store
Tag operations so that they modify the way-selection RAM instead of the TAG RAMs. In addition, when the WST bit
is set, the CACHE Index Store Data can be used for testing the data RAM.

EXL 0 Count when EXL. When this bit is set, count the event when
EXL = 1 and ERL = 0.

R/W Undefined

0 30, 15:12 Must be written as zeroes; returns zeroes when read. 0 0

31 0

Counter

Table E.44 Performance Counter Count Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

Table E.43 Performance Counter Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
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Setting the SPR bit enables scratchpad test mode. This mode allows reading and writing of the scratchpad pseudo-
tags as well the scratchpad data array.

Setting the ITC bit enables access to the ITC pseudo-tags that control the addressing information

At most one of the WST, SPR, and ITC bits should be set. Setting multiple bits will lead to unpredictable behavior.

Figure E-38 ErrCtl Register
31 30 29 28 27 26 25 24 23 19 18 13 12 4 3 0

PE PO WST SPR PCO ITC LBE WABE 0 PCI PI PD

Table E.45 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

PE 31 Parity Enable. This bit enables or disables the cache parity pro-
tection for both the instruction cache and the data cache.

This field is only write-able if the cache parity option was
implemented when the core was built. If cache parity is not
supported, this field is always read as 0. Software can test for
cache parity support by attempting to write a 1 to this field,
then read back the value.

R or R/W 0

PO 30 Parity Overwrite. If set, the PI/PD fields of this register over-
writes calculated parity for the data array. In addition, the P
field of the TagLo register overwrites calculated parity for the
tag array. This bit only has significance during CACHE Index
Store Tag and CACHE Index Store Data operations.

R/W 0

WST 29 Way Selection Test. If set, way-selection RAM test mode is
enabled. This affects only the CACHE instruction operation.

R/W 0

SPR 28 ScratchPadRAM test. If set, indexed CACHE instructions oper-
ate on the ScratchPad RAM. Undefined behavior if ScratchPad
RAM is not present

R/W 0

Encoding Meaning

0 Parity disabled

1 Parity enabled

Encoding Meaning

0 Use calculated parity

1 Override calculated parity

Encoding Meaning

0 Test mode disabled

1 Test mode enabled
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E.2.37 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the cache error-detection logic. When a Cache Error exception is
signalled, the fields of this register are set accordingly.

Figure E-39 CacheErr Register

PCO 27 Precode override. If set, the contents of the PCI field overwrite
the calculated precode bits when data is written to the instruc-
tion cache for indexed CACHE instruction operations.

R/W 0

ITC 26 InterThread Communication. If set, Index Load Tag and Index
Store Tag CACHE instructions operate on the ITC tag.

R/W 0

LBE 25 Bit indicating that the most recent Data Bus Error was involved
a load instruction. A Per-TC BE bit will indicate which TCs
were impacted.

R/W Undefined

WABE 24 Bit indicating that the most recent Data Bus Error was due to a
write allocate and that store data was lost. There is no indica-
tion of which TC(s) the store request came from.
It is possible for both LBE and WABE to be set if the bus error
was on a line being used for both loads and stores.

R/W Undefined

0 23:19 Must be written as zeroes; returns zeroes when read. 0 0

PCI 18:13 Instruction precode bits read from or written to the instruction
cache data RAM.

R/W Undefined

PI 12:4 Parity bit read from or written to instruction cache data RAM. R/W Undefined

PD 3:0 Parity bits read from or written to data cache data RAM. PD[0]
is even parity for the least-significant byte of the requested
data.

R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 0

ER EC ED ET ES EE EB EF SP EW Way Index

Table E.45 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Use calculated precode

1 Override calculated precode

Bits Meaning

12 Even parity bit for the pre-code bits

11:4 Per-byte even parity bits for the 64b of data
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Table E.46 CacheErr Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

ER 31 Error Reference. Indicates the type of reference that encoun-
tered an error.

R Undefined

EC 30 Indicates the cache level at which the error was detected: R Undefined

ED 29 Error Data. Indicates a data RAM error. R Undefined

ET 28 Error Tag. Indicates a tag RAM error. R Undefined

ES 27 Error source. Indicates whether error was caused by internal
processor or external snoop request.

R Undefined

EE 26 Error external: Indicates whether a bus parity error was
detected.
Not supported

R 0

EB 25 Error Both. Indicates that a data cache error occurred in addi-
tion to an instruction cache error.

In the case of an additional data cache error, the remainder of
the bits in this register are set according to the instruction cache
error.

R Undefined

Encoding Meaning

0 Instruction

1 Data

Encoding Meaning

0 Primary

1 Non-primary

Encoding Meaning

0 No data RAM error detected

1 Data RAM error detected

Encoding Meaning

0 No tag RAM error detected

1 Tag RAM error detected

Encoding Meaning

0 Error on internal request

1 Error on external request

Encoding Meaning

0 No additional data cache error

1 Additional data cache error
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EF 24 Error Fatal. Indicates that a fatal cache error has occurred.
There are a few situations where software will not be able to get
all information about a cache error from the CacheErr register.
These situations are fatal because software cannot determine
which memory locations have been affected by the error. To
enable software to detect these cases, the EF bit (bit 24) has
been added to the CacheErr register.
The following 6 cases are indicated as fatal cache errors by the
EF bit:
E.46.1 Dirty parity error in dirty victim (dirty bit cleared in

tag)
E.46.2 Tag parity error in dirty victim
E.46.3 Data parity error in dirty victim
E.46.4 WB store miss and EW error at the requested index
E.46.5 Dual/Triple errors from different transactions, e.g.

scheduled and non-scheduled load.
E.46.6 Multiple data cache errors detected before the first

instruction of the cache error handler is issued.
In addition to the above, simultaneous instruction and data
cache errors as indicated by CacheErr[EB] will cause informa-
tion about the data cache error to be unavailable. However, that
situation is not indicated by CacheErr[EF].

R Undefined

SP 23 Scratchpad. Indicates Scratchpad RAM parity error. R 0

EW 22 Error Way. Indicates a way selection RAM error. R Undefined

Way 21:20 Way. Specifies the cache way in which the error was detected.
It is not valid if a Tag RAM error is detected (ET=1) or Scratch-
pad RAM error is detected (SP=1).

R Undefined

Index 19:0 Index. Specifies the cache or Scratchpad RAM index of the
double word in which the error was detected. The way of the
faulty cache is written by hardware in the Way field. Software
must combine the Way and Index read in this register with
cache configuration information in the Config1 register in
order to obtain an index which can be used in an indexed
CACHE instruction to access the faulty cache data or tag. Note
that Index is aligned as a byte index, so it does not need to be
shifted by software before it is used in an indexed CACHE
instruction. Index bits [4:3] are undefined upon tag RAM errors
and Index bits above the MSB actually used for cache indexing
will also be undefined.
Bits [19:16] are only used for errors in the Scratchpad RAM.

R Undefined

Table E.46 CacheErr Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No Scratchpad RAM error detected

1 Scratchpad RAM error detected

Encoding Meaning

0 No way selection RAM error detected

1 Way selection RAM error detected
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E.2.38 TagLo Register (CP0 Register 28, Select 0,2,4)

The TagLo register acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operations of
the CACHE instruction use the TagLo register as the source of tag information. Note that the 34K core does not
implement the TagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

Note that there are separate registers for each of the caches (L1 I-cache: select 0, L1 D-cache: select 2, L2 cache:
select 4).

Figure E-40 TagLo Register Format (ErrCtl[WST]=0, ErrCtl[SPR]=0)

Figure E-41 TagLo Register Format (ErrCtl[WST]=1, ErrCtl[SPR]=0)

Figure E-42 TagLo Register Format (ErrCtl[WST]=0, ErrCtl[SPR]=1)

31 11 10 9 8 7 6 5 4 1 0

PTagLo U R V D L R P

31 24 23 20 19 15 10 9 8 7 5 4 1 0

Unused WSDP WSD WSLRU R Unused R U

tag 31 20 19 12 11 8 7 6 0

0 BasePA 0 E 0

1 0 Size 0

Table E.47 TagLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Unused/U various Not used in certain modes of operation. R/W Undefined

PTagLo 31:11 This field contains the physical address of the cache line. Bit 31
corresponds to bit 31 of the PA and bit 11 corresponds to bit 11
of the PA.
Bit 11 is only used when 8KB caches are implemented. For
other cache sizes, this bit will not exist in the tag and will be
written as a 0 on IndexLoadTag operations.

R/W Undefined

R 9:8, 4:1 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

D 6 This field indicates whether the cache line is dirty. It will only
be set if bit 7 (valid) is also set. For L1 I-cache, this field must
be written as zero and returns zero on read.

R/W Undefined

L 5 Specifies the lock bit for the cache tag. When this bit is set, and
the valid bit is set, the corresponding cache line will not be
replaced by the cache replacement algorithm.

R/W Undefined
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In addition to the three uses of the TagLo register specified above, there is a fourth application where TagLo is used
to access the pseudo-tags (control registers) of the ITC block. This is done by executing the Index Store Tag or Index
Load Tag operation of the CACHE instruction with the ErrCtl[ITC] set to 1 (and ErrCtl[SPR]/ErrCtl[WST] set to 0).

E.2.39 DataLo Register (CP0 Register 28, Select 1,3)

The DataLo register is a register that acts as the interface to the cache data array and is intended for diagnostic oper-
ations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
DataLo register. If the WST bit in the ErrCtl register is set, then the contents of DataLo can be written to the cache
data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the con-
tents of DataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

Note that there are separate DataLo registers for each of the primary caches (L1 I-cache: select 1, L1 D-cache: select
3). This register does not exist for the L2 cache.

P 0 Parity. Specifies the parity bit for the cache tag. This bit is
updated with tag array parity on CACHE Index Load Tag oper-
ations and used as tag array parity on Index Store Tag opera-
tions when the PO bit of the ErrCtl register is set.
NOTE: For the Data cache, this parity does not cover the dirty
bit; the dirty bit has a separate parity bit placed in the way
selection RAM.

R/W Undefined

WSDP 23:20 Dirty Parity (Optional, D-side only). This field contains the
value read from the WS array during a CACHE Index Load WS
operation.
If the PO field of the ErrCtl register is asserted, then this field
is used to store the dirty parity bits during a CACHE Index
Store WS operation.

R/W Undefined

WSD 19:16 Dirty bits (D-side only). This field contains the value read from
the WS array after a CACHE Index Load WS operation. It is
used to store into the WS array during CACHE Index Store WS
operations.

R/W Undefined

WSLRU 15:10 LRU bits. This field contains the value read from the WS array
after a CACHE Index Load WS operation. It is used to store
into the WS array during CACHE Index Store WS operations.

R/W Undefined

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field
will contain bits [31:12] of the base address of the scratchpad
region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will
indicate whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field
indicates the size of the scratchpad array. This field is the num-
ber of 4KB sections it contains. (Combined with the 0’s in 11:0,
the register will contain the number of bytes in the scratchpad
region)

R/W Undefined

Table E.47 TagLo Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)
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Figure E-43 DataLo Register Format

E.2.40 DataHi Register (CP0 Register 29, Select 1)

The DataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
DataHi register. If the WST bit in the ErrCtl register is set, then the contents of DataHi can be written to the cache
data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the con-
tents of DataHi can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

The DataHi register only exists for the Instruction Cache. The interface to the I-cache only operates on pairs of
instructions - the high instruction will be written into the DataHi register.

Note that DataHi and DataLo reflect the memory ordering of the instructions. Depending on the endianness of the
system, Instruction0 belongs in either DataHi (BigEndian) or DataLo (LittleEndian) and vice versa for Instruction1.

Figure E-44 DataHi Register Format

E.2.41 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
error. This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot

31 0

DATA

Table E.48 DataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

Table E.49 DataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined
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Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16 ASE, a read of the ErrorEPC register (via MFC0) returns the following
value in the destination GPR:

GPR[rt] ← ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure E-45 ErrorEPC Register Format

E.2.42 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location.
This register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the
context to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of
exception handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure E-46 DeSave Register Format

31 0

ErrorEPC

Table E.50 ErrorEPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table E.51 DeSave Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined
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Revision History

Revision Date Description

0.50 21st October 2004 First release for the 34K core “pre-release” package. Status is preliminary; in
particular note that the MIPS MT ASE description is missing some details
which changed with v0.97 of [MIPSMT].

0.81 24th May 2005 For first customer access (“EA”) release of the 34K core.
More information about the DSP ASE.
Brought up to date with v0.98 of [MIPSMT] and [MIPSDSP].

0.99 3rd August 2005 Preview of text of v1.00 leading up to GA release of the 34K core.

1.00 9th August 2005 For GA release of the 34K core.

1.05 28th September 2005 For GA release of the 34K core.
Better description of policy managers and performance counters.
Compatible with v1.00 of MT ASE and DSP ASE

1.20 1st March 2006 Incremental improvements with feedback. Change bars are against 1.05.

1.30 26th May 2006 Changes to help customers recycling the manual for reference:
• Added CP0 reference-format appendix.
• Complete review of performance counter event description.
• Many small changes in response to feedback.
• Converted to revised document templates.
Change bars vs. 1.20
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